-
Notifications
You must be signed in to change notification settings - Fork 0
/
mixup_layer.py
53 lines (44 loc) · 1.89 KB
/
mixup_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from tensorflow.keras import backend as K
from tensorflow.keras import layers
import tensorflow as tf
import tensorflow_probability as tfp
class MixupLayer(layers.Layer):
def __init__(self, prob, alpha=1, **kwargs):
super(MixupLayer, self).__init__(**kwargs)
self.prob = prob
self.alpha = alpha
def build(self, input_shape):
self.built = True
def call(self, inputs, training=None):
# get mixup weights
if self.alpha == 1:
#dist = tfp.distributions.Beta(0.5, 0.5)
#l = dist.sample([tf.shape(inputs[0])[0]])
l = tf.random.uniform(shape=[tf.shape(inputs[0])[0]])
X_l = tf.reshape(l, [-1]+[1]*(len(inputs[0].shape)-1))
y_l = tf.reshape(l, [-1]+[1]*(len(inputs[1].shape)-1))
# mixup data
X1 = inputs[0]
X2 = tf.reverse(inputs[0], axis=[0])
X = X1 * X_l + X2 * (1 - X_l)
# mixup labels
y1 = inputs[1]
y2 = tf.reverse(inputs[1], axis=[0])
y = y1 * y_l + y2 * (1 - y_l)
#y = tf.math.maximum(y1 * y_l, y2 * (1 - y_l))
# apply mixup or not
dec = tf.dtypes.cast(tf.random.uniform(shape=[tf.shape(inputs[0])[0]]) < self.prob, tf.dtypes.float32)
dec1 = tf.reshape(dec, [-1] + [1] * (len(inputs[0].shape) - 1))
out1 = dec1 * X + (1 - dec1) * inputs[0]
dec2 = tf.reshape(dec, [-1] + [1] * (len(inputs[1].shape) - 1))
out2 = dec2 * y + (1 - dec2) * inputs[1]
outputs = [out1, out2]
# pick output corresponding to training phase
return K.in_train_phase(outputs, inputs, training=training)
def get_config(self):
config = {
'prob': self.prob,
'alpha': self.alpha
}
base_config = super(MixupLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))