-
Notifications
You must be signed in to change notification settings - Fork 8
/
openl3_idea_aug_layer_classwise.py
40 lines (32 loc) · 1.5 KB
/
openl3_idea_aug_layer_classwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from tensorflow.keras import backend as K
from tensorflow.keras import layers
import tensorflow as tf
import tensorflow_probability as tfp
class AugLayer(layers.Layer):
def __init__(self, prob, **kwargs):
super(AugLayer, self).__init__(**kwargs)
self.prob = prob
def build(self, input_shape):
self.built = True
def call(self, inputs, training=None):
# mixup data
X1 = inputs[0]
X1_rev = tf.reverse(inputs[0], axis=[0])
# mixup labels
y = tf.concat([inputs[2], tf.zeros_like(inputs[2]), tf.zeros_like(inputs[2])], axis=1)
y_rev = tf.concat([tf.zeros_like(inputs[2]), 0.5 * inputs[2], 0.5 * tf.reverse(inputs[2], axis=[0])], axis=1)
# apply mixup or not
dec = tf.dtypes.cast(tf.random.uniform(shape=[tf.shape(inputs[0])[0]]) < self.prob, tf.dtypes.float32)
dec1 = tf.reshape(dec, [-1] + [1] * (len(inputs[0].shape) - 1))
out1 = dec1 * X1 + (1 - dec1) * X1_rev
dec3 = tf.reshape(dec, [-1] + [1] * (len(y.shape) - 1))
out3 = dec3 * y + (1 - dec3) * y_rev
outputs = [out1, inputs[1], out3]#, out4]
# pick output corresponding to training phase
return K.in_train_phase(outputs, [inputs[0], inputs[1], y], training=training)
def get_config(self):
config = {
'prob': self.prob,
}
base_config = super(AugLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))