-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler_29.scm
45 lines (36 loc) · 994 Bytes
/
euler_29.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/csi -bq
#|
Distinct powers
Problem 29
Consider all integer combinations of a^b for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
If they are then placed in numerical order, with any repeats removed, we get
the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by a^b for 2 ≤ a ≤ 100
and 2 ≤ b ≤ 100?
|#
(define (expo a b lim)
(cond
((eq? a 1)
'())
((eq? b 2)
(cons (expt a b)
(expo (sub1 a) lim lim)))
(else
(cons (expt a b)
(expo a (sub1 b) lim)))))
(define (counter l)
(cond
((null? l)
0)
((member (car l) (cdr l))
(counter (cdr l)))
(else
(add1 (counter (cdr l))))))
(define n 100)
(define l (expo n n n))
(display (counter l))