-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainer.py
88 lines (71 loc) · 2.79 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
from collections import namedtuple
import time
from torch.nn import functional as F
import logging
from torch import nn
import torch as t
from config import opt
from torchnet.meter import ConfusionMeter, AverageValueMeter
from myoptimizer import get_optimizer
class WaterNetTrainer(nn.Module):
def __init__(self, water_net):
super(WaterNetTrainer, self).__init__()
self.water_net = water_net
# optimizer
self.optimizer = get_optimizer(self.water_net)
def forward(self, datas):
pred = self.water_net(datas)
return pred
def train_step(self, label, datas):
# switch to train mode
self.water_net.train()
self.optimizer.zero_grad()
pred = self.forward(datas)
loss = F.nll_loss(pred, label)
loss.backward()
self.optimizer.step()
return loss, pred
def scale_lr(self):
lastlr = opt.lr
opt.lr *= opt.lr_decay
print("=========*** lr{} change to lr{}==========\n".format(lastlr, opt.lr))
for param_group in self.optimizer.param_groups:
param_group['lr'] = opt.lr
return self.optimizer
def save(self, save_optimizer=True, better = False, save_path=None):
save_dict = dict()
save_dict['model'] = self.water_net.state_dict()
save_dict['config'] = opt._state_dict()
# save_dict['vis_info'] = self.vis.state_dict()
save_dict['optimizer'] = self.optimizer.state_dict()
if save_optimizer:
save_dict['optimizer'] = self.optimizer.state_dict()
if better:
save_path = 'cur_best_params'
else:
# save_path = opt.save_path
if opt.customize:
save_name = 'model' + '_self_' + opt.arch + '_' + opt.optim + opt.kind + 'params.tar'
else:
save_name = 'model' + '_default_' + opt.arch + '_' + opt.optim + opt.kind + 'params.tar'
save_path = os.path.join(opt.save_path, save_name)
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print(save_path)
t.save(save_dict, save_path)
# self.vis.save([self.vis.env])
return save_path
def load(self, path, load_optimizer=True, parse_opt=False):
state_dict = t.load(path)
if 'model' in state_dict:
self.water_net.load_state_dict(state_dict['model'])
else: # legacy way, for backward compatibility
self.water_net.load_state_dict(state_dict)
return self
if parse_opt:
opt._parse(state_dict['config'])
if 'optimizer' in state_dict and load_optimizer:
self.optimizer.load_state_dict(state_dict['optimizer'])
return self