forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumNumberOfOperationsToMoveAllBallsToEachBox.cpp
78 lines (73 loc) · 2.71 KB
/
MinimumNumberOfOperationsToMoveAllBallsToEachBox.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Source : https://leetcode.com/problems/minimum-number-of-operations-to-move-all-balls-to-each-box/
// Author : Hao Chen
// Date : 2021-03-20
/*****************************************************************************************************
*
* You have n boxes. You are given a binary string boxes of length n, where boxes[i] is '0' if the ith
* box is empty, and '1' if it contains one ball.
*
* In one operation, you can move one ball from a box to an adjacent box. Box i is adjacent to box j
* if abs(i - j) == 1. Note that after doing so, there may be more than one ball in some boxes.
*
* Return an array answer of size n, where answer[i] is the minimum number of operations needed to
* move all the balls to the ith box.
*
* Each answer[i] is calculated considering the initial state of the boxes.
*
* Example 1:
*
* Input: boxes = "110"
* Output: [1,1,3]
* Explanation: The answer for each box is as follows:
* 1) First box: you will have to move one ball from the second box to the first box in one operation.
* 2) Second box: you will have to move one ball from the first box to the second box in one operation.
* 3) Third box: you will have to move one ball from the first box to the third box in two operations,
* and move one ball from the second box to the third box in one operation.
*
* Example 2:
*
* Input: boxes = "001011"
* Output: [11,8,5,4,3,4]
*
* Constraints:
*
* n == boxes.length
* 1 <= n <= 2000
* boxes[i] is either '0' or '1'.
******************************************************************************************************/
class Solution {
public:
vector<int> minOperations(string boxes) {
vector<int> result(boxes.size());
//minOperations01(boxes, result); //128ms
minOperations02(boxes, result); //4s
return result;
}
void minOperations01(string& boxes, vector<int>& result ) {
vector<int> balls;
for(int i=0; i<boxes.size(); i++) {
if(boxes[i] == '1') balls.push_back(i);
}
for (int i=0; i<boxes.size(); i++) {
int steps = 0;
for (int j=0; j<balls.size(); j++) {
steps += abs(balls[j] - i);
}
result[i] = steps;
}
}
void minOperations02(string& boxes, vector<int>& result ) {
//from left to right
for(int i=0, ops=0, balls=0; i< boxes.size(); i++) {
result[i] += ops;
balls += (boxes[i] == '1' ? 1 : 0);
ops += balls;
}
//from right to left
for(int i=boxes.size()-1, ops=0, balls=0; i>=0; i--) {
result[i] += ops;
balls += (boxes[i] == '1' ? 1 : 0);
ops += balls;
}
}
};