-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistLinSeg.m
executable file
·101 lines (78 loc) · 2.35 KB
/
distLinSeg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
% Function for fast computation of the shortest distance between two line segments
%
% Algorithm implemented:
% Vladimir J. LUMELSKY,
% ``ON FAST COMPUTATION OF DISTANCE BETWEEN LINE SEGMENTS'',
% Information Processing Letters 21 (1985) 55-61
%
%
% Input: ([start point of line1], [end point of line1], [start point of
% line2], [end point of line2])
%
% Output: dist - shortest distance between the line segments (in N dimensions)
% points (optional) - shortest points on the line segments
%
% Example:
% >> [dist,points] = distLinSeg([0 0], [1 1], [1 0], [2 0])
% >> dist = 0.7071
% >> points = [0.5 0.5; 1 0]
%
%
% 1.2.2015 - created: Ondrej Sluciak ([email protected])
%
function [dist,varargout] = distLinSeg(point1s,point1e,point2s,point2e)
d1 = point1e - point1s;
d2 = point2e - point2s;
d12 = point2s - point1s;
D1 = d1*d1'; %D1 = sum(d1.^2);
D2 = d2*d2'; %D2 = sum(d2.^2);
S1 = d1*d12'; % S1 = sum(d1.*d12);
S2 = d2*d12'; % S2 = sum(d2.*d12);
R = d1*d2'; % R = sum(d1.*d2);
den = D1*D2-R^2; %denominator
if (D1 == 0 || D2 == 0) % if one of the segments is a point
if (D1 ~= 0) % if line1 is a segment and line2 is a point
u = 0;
t = S1/D1;
t = fixbound(t);
elseif (D2 ~= 0) % if line2 is a segment and line 1 is a point
t = 0;
u = -S2/D2;
u = fixbound(u);
else % both segments are points
t = 0;
u = 0;
end
elseif (den == 0) % if lines are parallel
t = 0;
u = -S2/D2;
uf = fixbound(u);
if (uf~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
else % general case
t = (S1*D2-S2*R)/den;
t = fixbound(t);
u = (t*R-S2)/D2;
uf = fixbound(u);
if (uf ~= u)
t = (uf*R+S1)/D1;
t = fixbound(t);
u = uf;
end
end
% Compute distance given parameters 't' and 'u'
dist = norm(d1*t-d2*u-d12); %dist = sqrt(sum((d1*t-d2*u-d12).^2));
if (nargout > 1)
varargout = {[point1s + d1*t;point2s+d2*u]};
end
end
function num = fixbound(num) % if num is out of (0,1) round to {0,1}
if (num < 0)
num = 0;
elseif (num > 1)
num = 1;
end
end