-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy path07_fit_min_neighbors.py
62 lines (52 loc) · 2.03 KB
/
07_fit_min_neighbors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import division
import csv
import cv2
import numpy as np
import os
tennis_cascade_files = [
'output/cascade-default.xml',
'output/cascade-4000-2000.xml',
'output/cascade-6000-3000.xml',
'output/cascade-8000-4000.xml']
positive_files = [os.path.join('satellite/fit', f) \
for f in os.listdir('satellite/fit') if f.endswith('.png')]
negative_files = [os.path.join('satellite/fit/negative', f) \
for f in os.listdir('satellite/fit/negative') if f.endswith('.png')]
def get_total_pitches(tennis_cascade, filename, min_neighbors):
img = cv2.imread(filename, 0)
pitches = tennis_cascade.detectMultiScale(
img, minNeighbors=min_neighbors)
return len(pitches)
for tennis_cascade_file in tennis_cascade_files:
print tennis_cascade_file
tennis_cascade = cv2.CascadeClassifier(tennis_cascade_file)
# Open
positive_f = open(tennis_cascade_file[:-4] + '_positive.csv', 'w')
negative_f = open(tennis_cascade_file[:-4] + '_negative.csv', 'w')
positive_writer = csv.writer(positive_f)
negative_writer = csv.writer(negative_f)
for min_neighbors in range(0, 501, 10):
print min_neighbors
# Pos
total_set = 0
for positive_file in positive_files:
total_pitches = get_total_pitches(
tennis_cascade=tennis_cascade,
filename=positive_file,
min_neighbors=min_neighbors)
total_set += total_pitches
total_average = total_set / len(positive_files)
positive_writer.writerow([total_average, min_neighbors])
# Neg
total_set = 0
for negative_file in negative_files:
total_pitches = get_total_pitches(
tennis_cascade=tennis_cascade,
filename=negative_file,
min_neighbors=min_neighbors)
total_set += total_pitches
total_average = total_set / len(negative_files)
negative_writer.writerow([total_average, min_neighbors])
# Close
positive_f.close()
negative_f.close()