Skip to content

Latest commit

 

History

History
14 lines (11 loc) · 1.03 KB

math.md

File metadata and controls

14 lines (11 loc) · 1.03 KB

#Some useful math operations!

##PLEASE NOTE: This is not a stats class. We're just giving you tools, it's up to you to ensure that you apply them appropriately.

Function Use Example Need to import
tstat, pval = stats.ttest_ind(list1, list2) Do a simple t-test and get a p-value tstat, pval = stats.ttest_ind(subset1, subset2) from scipy import stats
npr.permutation(object) Randomly permute the data object npr.permutation(subset2) from numpy import random as npr
object.mean() Get mean of object subset2.mean() import numpy
object1.cov(object2) Estimate coefficient of covariance between two objects subset1.cov(subset2) import pandas
object1.corr(oject2, method='spearman') Perform a Kendall, Spearman or Pearson correlation test subset1.corr(subset2) import pandas
rolling_mean(data frame, window).plot(style='k') Get and plot a rolling mean in your data frame with window size x. Plot it rolling_mean(df, 1).plot(style='k') import pandas

|