-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtensorflow_word2vec.py
248 lines (219 loc) · 9.65 KB
/
tensorflow_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/python
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Read the data into a list of strings.
def read_data(filename):
with open(filename,encoding='utf8') as f:
data = tf.compat.as_str(f.read()).split()
return data
# 单词表
root_path = os.getcwd() + os.sep
filename = os.path.join(root_path+"data", "segment.txt")
words = read_data(filename)
# print(words)
# print(collections.Counter(words).most_common(10))
vocabulary_size = 50000
def build_dataset(words, vocabulary_size):
count = [['UNK', -1]]
# extend追加一个列表
# Counter用来统计每个词出现的次数
# most_common返回一个TopN列表,只留50000个单词包括UNK
# c = Counter('abracadabra')
# c.most_common()
# [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]
# c.most_common(3)
# [('a', 5), ('r', 2), ('b', 2)]
# 前50000个出现次数最多的词
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
# 生成 dictionary,词对应编号, word:id(0-49999)
# 词频越高编号越小
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
# data把数据集的词都编号
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
# 记录UNK词的数量
count[0][1] = unk_count
# 编号对应词的字典
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
# data 数据集,编号形式
# count 前50000个出现次数最多的词
# dictionary 词对应编号
# reverse_dictionary 编号对应词
data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)
del words # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
# [ skip_window target skip_window ]
# [ skip_window target skip_window ]
# [ skip_window target skip_window ]
# [0 1 2 3 4 5 6 7 8 9 ...]
# t i
# 循环3次
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# 获取batch和labels
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
# 循环2次,一个目标单词对应两个上下文单词
for j in range(num_skips):
while target in targets_to_avoid:
# 可能先拿到前面的单词也可能先拿到后面的单词
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
# Backtrack a little bit to avoid skipping words in the end of a batch
# 回溯3个词。因为执行完一个batch的操作之后,data_index会往右多偏移span个位置
data_index = (data_index + len(data) - span) % len(data)
return batch, labels
# 打印sample data
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
# 词向量维度
embedding_size = 100 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
# 从0-100抽取16个整数,无放回抽样
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
# 负采样样本数
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
# with tf.device('/cpu:0'):
# 词向量
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# embedding_lookup(params,ids)其实就是按照ids顺序返回params中的第ids行
# 比如说,ids=[1,7,4],就是返回params中第1,7,4行。返回结果为由params的1,7,4行组成的tensor
# 提取要训练的词
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the noise-contrastive estimation(NCE) loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
# 抽取一些常用词来测试余弦相似度
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
# valid_size == 16
# [16,1] * [1*50000] = [16,50000]
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 100001
final_embeddings = []
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
# 获取一个批次的target,以及对应的labels,都是编号形式的
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
# 计算训练2000次的平均loss
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 20000 == 0:
sim = similarity.eval()
# 计算验证集的余弦相似度最高的词
for i in xrange(valid_size):
# 根据id拿到对应单词
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
# 从大到小排序,排除自己本身,取前top_k个值
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
# 训练结束得到的词向量
final_embeddings = normalized_embeddings.eval()
# 生成模型所需要的格式:优势 -0.012575351 0.04629608 -0.034832083
vecfile = os.path.join(root_path+"data", "vec.txt")
with open(vecfile,'w',encoding='utf8') as vec:
for index,embedding in enumerate(final_embeddings):
vec.write(reverse_dictionary[index])
vec.write(' ')
for emb in embedding:
vec.write(str(emb))
vec.write(' ')
vec.write('\n')