-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cc
executable file
·169 lines (142 loc) · 4.03 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
* main.cc
*
* Created on: Apr 20, 2011
* Author: wsttiger
*/
#include <iostream>
#include <fstream>
#include <ctime>
#include <bitset>
#include <vector>
#include <map>
#include <cmath>
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include "matrix.h"
#include "hubbard.h"
using std::cout;
using std::endl;
using std::bitset;
using std::vector;
using std::map;
using std::pair;
using std::string;
using std::complex;
using namespace Eigen;
#define NSIZE 26
//void test_eigen3()
//{
// MatrixXcf A = MatrixXcf::Random(4,4);
// cout << "Here is a random 4x4 matrix, A:" << endl << A << endl << endl;
//
// ComplexEigenSolver<MatrixXcf> ces;
// ces.compute(A);
// VectorXcf ev = ces.eigenvalues();
// MatrixXcf evv = ces.eigenvectors();
//
// printf("WST: the lowest eigenvalue: %15.7f\n\n", real(ev[0]));
//
// cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl;
// cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl;
//
// complex<float> lambda = ces.eigenvalues()[0];
// cout << "Consider the first eigenvalue, lambda = " << lambda << endl;
// VectorXcf v = ces.eigenvectors().col(0);
// cout << "If v is the corresponding eigenvector, then lambda * v = " << endl << lambda * v << endl;
// cout << "... and A * v = " << endl << A * v << endl << endl;
//
// cout << "Finally, V * D * V^(-1) = " << endl
// << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
//}
//void test_diag()
//{
// int n = 3;
// vector<double> mat(n,0.0);
//
// for (int i = 0; i < n; i++)
// {
// for (int j = 0; j < n; j++)
// {
// mat[i*n+j] = i*n+j;
// }
// }
//
// print_matrix(mat,n,n);
// vector<double> e(n,0.0);
// vector<double> ev(n*n,0.0);
//}
void hubbard_w_matrix()
{
// create HubbardCalculation object
HubbardCalculation hc(3,2,3,3,8.0,1.0);
printf("number of states: %d\n\n", hc.get_nstates());
int nstates = hc.get_nstates();
vector<double> hmat = hc.make_matrix(hc.get_states());
vector<double> e(nstates,0.0);
vector<double> ev(nstates*nstates,0.0);
diag_matrix(hmat,nstates,e,ev);
printf("diag matrix: %15.8f\n\n", e[0]);
}
void hubbard_w_lanczos()
{
// create HubbardCalculation object
HubbardCalculation hc(3,2,3,3,8.0,1.0);
printf("number of states: %d\n\n", hc.get_nstates());
Lanczos<HubbardCalculation> l(&hc,100);
l.run();
vector<double> ev1 = l.lowstate();
//print_vector(ev1);
hc.compute_1p_greens_function(-10.0,10.0,200,0.1);
}
void hubbard_w_lanczos_from_file()
{
// create HubbardCalculation object
HubbardCalculation hc("hubbard.in");
printf("number of states: %d\n\n", hc.get_nstates());
//vector<double> mat = hc.make_matrix();
//print_matrix(mat,hc.get_nstates(), hc.get_nstates());
//exit(EXIT_FAILURE);
Lanczos<HubbardCalculation> l(&hc,100);
l.run();
hc.make_matrix();
// vector<double> ev1 = l.lowstate();
// //print_vector(ev1);
//// hc.compute_1p_greens_function(-32.0,16.0,800,0.1);
// hc.compute_1p_greens_function(-3.0,6.0,8,0.1);
// hc.compute_1p_greens_function_matrix(-3.0,6.0,8,0.1);
}
void test_hubbard_w_openmp()
{
// create HubbardCalculation object
HubbardCalculation hc(4,4,6,6,8.0,1.0);
unsigned int nstates = hc.get_nstates();
printf("number of states: %d\n\n", nstates);
// create random vector
vector<double> v1 = random_vector(nstates);
// apply hubbard hamiltonian to v1 without openmp
vector<double> rv1 = hc.apply(v1);
unsigned int ntimes = 200;
for (unsigned int i = 0; i < ntimes; i++)
{
vector<double> rv2 = hc.apply_w_openmp(v1);
string result = (is_equals(rv1,rv2)) ? "PASS!" : "FAIL!";
cout << "trial: " << i << " " << result << endl;
}
}
int main(int argc, char** argv)
{
hubbard_w_lanczos_from_file();
// int tid;
// printf("Hello world from threads:\n");
// #pragma omp parallel private (tid)
// {
// tid = omp_get_thread_num();
// printf("Hello from thread: <%d>\n", tid);
// }
// printf("I am sequential now.\n");
//
// test_hubbard_w_openmp();
// return 0;
return 0;
}