-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_attack_bandits_one.py
52 lines (36 loc) · 1.72 KB
/
test_attack_bandits_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import numpy as np
from PIL import Image
from datetime import datetime
ENV_MODEL = 'deepapi'
DEEP_API_URL = 'http://localhost:8080'
ENV_MODEL_TYPE = 'inceptionv3'
# ENV_MODEL_TYPE = 'resnet50'
# ENV_MODEL_TYPE = 'vgg16'
os.environ['ENV_MODEL'] = ENV_MODEL
os.environ['ENV_MODEL_TYPE'] = ENV_MODEL_TYPE
from attacks.bandits_attack import BanditsAttack
from dataset.imagenet import load_imagenet
N_SAMPLES = 100
CONCURRENCY = 1
if __name__ == "__main__":
x_test, y_test = load_imagenet(N_SAMPLES)
if ENV_MODEL_TYPE == 'inceptionv3':
from apis.deepapi import DeepAPI_Inceptionv3_ImageNet
model = DeepAPI_Inceptionv3_ImageNet(DEEP_API_URL, concurrency=CONCURRENCY)
elif ENV_MODEL_TYPE == 'resnet50':
from apis.deepapi import DeepAPI_Resnet50_ImageNet
model = DeepAPI_Resnet50_ImageNet(DEEP_API_URL, concurrency=CONCURRENCY)
elif ENV_MODEL_TYPE == 'vgg16':
from apis.deepapi import DeepAPI_VGG16_ImageNet
model = DeepAPI_VGG16_ImageNet(DEEP_API_URL, concurrency=CONCURRENCY)
# Bandits Attack
bandits_attack = BanditsAttack(model)
# Vertically Distributed Attack
i = 29
log_dir = 'logs/bandits/' + ENV_MODEL + '/one/' + ENV_MODEL_TYPE + '/' + str(i) + '/' + str(CONCURRENCY) + '/' + datetime.now().strftime("%Y%m%d-%H%M%S")
x_adv = bandits_attack.attack(np.array([x_test[i]]), np.array([y_test[i]]), epsilon = 0.05, max_it=1000, online_lr=100, concurrency=CONCURRENCY, log_dir=log_dir)
im = Image.fromarray(np.array(np.uint8(x_test[i])))
im_adv = Image.fromarray(np.array(np.uint8(x_adv[0])))
im.save(f"x_{i}.jpg", subsampling=0, quality=100)
im_adv.save(f"x_{i}_adv_bandits_" + str(CONCURRENCY) + ".jpg", subsampling=0, quality=100)