forked from MaximumEntropy/Seq2Seq-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaption_model.py
65 lines (52 loc) · 2.52 KB
/
caption_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
class EncoderCNN(nn.Module):
def __init__(self):
"""Load the pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1] # delete the last fc layer.
self.resnet = nn.Sequential(*modules)
self.outdim = resnet.fc.in_features
def forward(self, images):
"""Extract feature vectors from input images."""
with torch.no_grad():
features = self.resnet(images)
features = features.reshape(features.size(0), -1)
return features
class DecoderRNN(nn.Module):
def __init__(self, feature_size, embed_size, hidden_size, vocab_size, num_layers):
"""Set the hyper-parameters and build the layers."""
super(DecoderRNN, self).__init__()
self.init_linear = nn.Linear(feature_size, embed_size)
self.init_bn = nn.BatchNorm1d(embed_size, momentum=0.01)
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, features, captions, states=None,
max_decode_length=None, beam=None, teach_flags=None):
features = self.init_bn(self.init_linear(features))
tgt = self.embed(captions)
if max_decode_length is None:
max_decode_length = captions.shape[1]
if teach_flags is None:
teach_flags = [True] + [False] * max_decode_length
if beam is None:
get_next = lambda logit, tgt, step: tgt[:, step]
elif beam == 0:
get_next = lambda logit, tgt, step: (tgt[:, step] if teach_flags[step] else torch.mm(F.softmax(logit, -1), self.embed.weight))
elif beam > 0:
get_next = lambda logit, tgt, step: (tgt[:, step] if teach_flags[step] else self.embed(logit.max(-1)[1]))
logits = []
for step in range(-1, max_decode_length):
input = get_next(logit, tgt, step) if step > -1 else features
output, states = self.lstm(input.unsqueeze(1), states)
output = output.squeeze(1)
logit = self.linear(output)
if step > -1:
logits.append(logit)
logits = torch.stack(logits, 1)
return logits