-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
98 lines (75 loc) · 2.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from pathlib import Path
import keras
import tensorflow as tf
from keras import layers
from captcha_ocr import build_model
# Path to the data directory
data_dir = Path("./data/")
# Get list of all the images
files = list(data_dir.glob("*.tfrecords"))
characters = sorted("abcdefghijklmnpqrstuvwxyz123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")
print("Number of TFRecord files found: ", len(files))
print("Number of unique characters: ", len(characters))
print("Characters present: ", characters)
# Batch size for training and validation
batch_size = 16
# Desired image dimensions
img_width = 90
img_height = 35
validation_size = 256
# Mapping characters to integers
char_to_num = layers.StringLookup(vocabulary=characters, mask_token=None)
# Mapping integers back to original characters
num_to_char = layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True
)
captcha_feature_description = {
"phrase": tf.io.FixedLenFeature([], tf.string),
"image": tf.io.FixedLenFeature([], tf.string),
}
def encode_single_sample(example_proto):
# 1. Read image
features = tf.io.parse_single_example(example_proto, captcha_feature_description)
# 2. Decode
img = tf.io.parse_tensor(features["image"], tf.uint8)
# 3. Convert to float32 in [0, 1] range
img = tf.image.convert_image_dtype(img, tf.float32)
# 4. Resize to the desired size
# img = tf.image.resize(img, [img_height, img_width])
# 5. Transpose the image because we want the time
# dimension to correspond to the width of the image.
img = tf.transpose(img, perm=[1, 0, 2])
# 6. Map the characters in label to numbers
label = char_to_num(tf.strings.upper(tf.strings.bytes_split(features["phrase"])))
# 7. Return a dict as our model is expecting two inputs
return {"image": img, "label": label}
dataset = tf.data.TFRecordDataset(files)
train_dataset = dataset.skip(validation_size)
train_dataset = (
train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
validation_dataset = dataset.take(validation_size)
validation_dataset = (
validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
# Get the model
model = build_model(img_width, img_height, 3, num_to_char)
model.summary()
# TODO restore epoch count.
epochs = 10
early_stopping_patience = 3
# Add early stopping
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=early_stopping_patience, restore_best_weights=True
)
# Train the model
history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=epochs,
callbacks=[early_stopping],
)