Skip to content

Latest commit

 

History

History
312 lines (247 loc) · 15.6 KB

README.md

File metadata and controls

312 lines (247 loc) · 15.6 KB

Runtime Calculator for Service-Based Maintainability Metrics

Actions Status Quality Gate Status SonarQube Maintainability Rating Lines of Code Coverage

This Java CLI application uses operational data produced by service- or microservice-based systems for the calculation of service-based maintainability metrics. It collects runtime data by using integrators (e.g. via OpenTracing), calculates maintainability metrics, and uses exporters to output the results (e.g. as a JSON file).

Usage Instructions

# build the executable JAR
mvn clean install

# display a list of possible parameters
java -jar target/ms-runtime-analysis-1.0.1.jar --help
usage: Microservices Maintainability Analysis via Runtime Data
 -h,--help                       Show help
 -d,--debug                      Enable debug output
 -sd,--start_date <arg>          (Required) Start date for the analysis,
                                 yyyy/MM/dd HH:mm:ss or unix timestamp in
                                 ms
 -ed,--end_date <arg>            (Optional) End date for the analysis,
                                 yyyy/MM/dd HH:mm:ss or unix timestamp in
                                 ms, defaults to now
 -i,--integrators <arg>          (Required) Integrators to be used,
                                 delimited with commas
 -ip,--integrator_params <arg>   (Optional) Parameters for the
                                 integrators, space-delimited
                                 integrator:key=value elements
 -e,--exporters <arg>            (Required) Exporters to be used,
                                 delimited with commas
 -ep,--exporter_params <arg>     (Optional) Parameters for the exporters,
                                 space-delimited exporter:key=value
                                 elements

# example run with a local Zipkin instance with collected runtime data
java -jar target/ms-runtime-analysis-1.0.1.jar \
    --start_date "2019/01/01 00:00:00" \
    --end_date "now" \
    --integrators "zipkin" \
    --integrator_params "zipkin:url=http://localhost:9411" \
    --exporters="xml,json,csv,human_readable,markdown" \
    --exporter_params "xml:filename=results-examples/metrics.xml" \
                    "json:filename=results-examples/metrics.json" \
                    "csv:filename=results-examples/metrics.csv" \
                    "human_readable:filename=results-examples/metrics.txt" \
                    "markdown:filename=results-examples/metrics.md"

Framework Architecture

architecture

The framework is developed to be easily extensible. New integrators, metrics and exporters can be added to support additional data sources, maintainability metrics, and result formats.

Currently Implemented Modules

Integrators

Metrics

Each metric class includes a short description and a publication reference as a comment at the top.

Exporters

Using the Zipkin Integrator

A Zipkin server is required to collect runtime data using the Zipkin integrator. No special configuration for this Zipkin server is needed. To start a local Zipkin server instance via Docker, use the following command:

docker run -d -p 9411:9411 openzipkin/zipkin

The web interface can then be reached at http://localhost:9411. The system to be monitored has to be extended with tracing code to send runtime data to the Zipkin server. A wide variety of libraries for many programming languages and frameworks is available (see https://zipkin.apache.org/pages/tracers_instrumentation.html).

Installation of an Example Microservice System with Zipkin Integration

The framework has been tested with a microservice-based microblogging system available at https://github.com/senecajs/ramanujan. This example system already includes the required modifications for the Zipkin integration, which simply need to be commented in. For an example, see api/api-service.js, line 38.

To run this application, use the following commands:

git clone https://github.com/senecajs/ramanujan.git
cd ramanujan/
find . -type f -print0 | xargs -0 sed -i 's/\/\/.use(\x27zipkin-tracer\x27, {sampling:1})/.use(\x27zipkin-tracer\x27, {sampling:1})/g'
npm install
./start.sh

To run the application via Docker, use these commands (doesn't work on all platforms):

git clone https://github.com/senecajs/ramanujan.git
cd ramanujan/
find . -type f -print0 | xargs -0 sed -i 's/\/\/.use(\x27zipkin-tracer\x27, {sampling:1})/.use(\x27zipkin-tracer\x27, {sampling:1})/g'
cd docker/
make
docker stack deploy -c ramanujan.yml ramanujan

For more information, see https://github.com/senecajs/ramanujan. Exemplary metric results from our case study with this system can found in the results-examples directory.

How to Build a New Integrator to Support Additional Data Sources

Integrators produce a single common canonical graph representing the collected runtime data of a user-defined time span. The canonical runtime data model has the following format:

architecture

The integrators are run sequentially and change/extend the previous graph.

To create another integrator, follow these steps:

  • Create a new Java class in the integrators package.
  • The class has to implement the IntegratorInterface interface:
public class NewIntegrator implements IntegratorInterface {
    ...
}

The interface contains just one method to implement:

public DefaultDirectedGraph<Service, DefaultEdge> integrateRuntimeData(Configuration configuration, Map params, DefaultDirectedGraph<Service, DefaultEdge> graph) {
    ...
}

Input Parameters:

  • Configuration configuration: contains application configuration parameters, like the start and end date of the analysis
  • Map params: contains the parameters for just this integrator, like the url to the data source
  • DefaultDirectedGraph<Service, DefaultEdge> graph: contains the Graph representing the collected runtime data of previous integrators

Returns:
DefaultDirectedGraph<Service, DefaultEdge>: the changed/extended graph representing the collected runtime data of this and previous integrators

To use the newly created integrator, specify its class name as the value for the --integrators application parameter and optionally add parameters needed by this integrator to --integrator_params (see Usage Instructions).

How to Build a New Metric Module

To add another metric to the framework, follow these steps:

  • Create a new Java class in the metrics package.
  • The class has to implement the MetricInterface interface:
public class NewMetric implements MetricInterface {
    ...
}

The interface contains just one method that needs to be implemented:

public Metric calculateMetric(DefaultDirectedGraph<Service, DefaultEdge> graph) {
    ...
}

Input Parameters:
DefaultDirectedGraph<Service, DefaultEdge> graph: the graph representing the collected runtime data of the integrators

Returns:
Metric: a metric object containing attributes of the metric like name and description as well as the calculated result(s). The data model for metric objects is as follows:

architecture

  • longName: name of the metric
  • abbreviation: abbreviation of the metric
  • description: text describing the metric
  • interpretation: text describing how to interpret the results and the range of the possible result values
  • resultStatus: an integer specifying if there was an error during the calculation (0) or if the calculation was successful with a single result (1), multiple results (2), or nested results (3).
  • resultStatusMessage: contains the error message if there was an error during calculation, otherwise empty
  • result: one of the following result types
    • Single result
    • Multiple results, each one mapping a key to a value
    • Nested results, each one mapping a key to a list of maps mapping a key to a value
  • resultDetails: contains additional details for the calculated metric, e.g. identified cycles in the metric Cyclic Service Dependencies (CSD)

Each metric implemented in this way will be automatically used in the analysis.

How to Build a New Exporter to Support Additional Result Formats

The exporters output the calculated metrics to an arbitrary target in an arbitrary format. There can be as many exporters as needed. For the canonical results data model, see the above section on how to build a new metric module.

To create another exporter follow these steps:

  • Create a new Java class in the exporters package.
  • The class has to implement the ExporterInterface interface:
public class NewExporter implements ExporterInterface {
    ...
}

The interface contains just one method to implement:

public Boolean exportResults(Configuration configuration, Map params, ArrayList<Metric> metrics) {
    ...
}

Input Parameters:

  • Configuration configuration: contains application configuration parameters, like the start and end date of the analysis
  • Map params: contains the parameters for just this exporter, like the target filename
  • ArrayList<Metric> metrics: a list containing the calculated metrics and their attributes

Returns:
Returns true if the export was successful, otherwise false

To use the newly created exporter, specify its class name as the value for the --exporters application parameter and optionally add parameters needed by this exporter to --exporter_params (see Usage Instructions).

XML Schema Definition (XSD) for the XML Exporter

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
  <xs:element name="metrics">
    <xs:complexType>
      <xs:sequence>
        <xs:element maxOccurs="unbounded" ref="metric"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="metric">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="name" type="xs:string"/>
        <xs:element name="abbreviation" type="xs:string"/>
        <xs:element name="description" type="xs:string"/>
        <xs:element name="interpretation" type="xs:string"/>
        <xs:choice>
          <xs:element ref="result"/>
          <xs:element ref="results"/>
        </xs:choice>
        <xs:element minOccurs="0" ref="details"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="result">
    <xs:complexType mixed="true">
      <xs:choice minOccurs="0" maxOccurs="unbounded">
        <xs:element name="name" type="xs:string"/>
        <xs:element name="value" type="xs:decimal"/>
        <xs:element ref="subresult"/>
      </xs:choice>
    </xs:complexType>
  </xs:element>
  <xs:element name="subresult">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="name" type="xs:string"/>
        <xs:element name="value" type="xs:decimal"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="results">
    <xs:complexType>
      <xs:sequence>
        <xs:element maxOccurs="unbounded" ref="result"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="details">
    <xs:complexType>
      <xs:sequence>
        <xs:element maxOccurs="unbounded" name="detail" type="xs:string"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>