-
Notifications
You must be signed in to change notification settings - Fork 0
/
5_april.py
520 lines (406 loc) · 16.6 KB
/
5_april.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#!/usr/bin/env python
# ROS python API
import rospy
from numpy import inf
# 3D point & Stamped Pose msgs
# it is a Laserscan not a point cloude so we may not need the point msg here
from std_msgs.msg import Float64MultiArray, Float32
# import all mavros messages and services
from collections import namedtuple
import torch as T
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
import math
import random
from sensor_msgs.msg import LaserScan
from gazebo_msgs.msg import ModelStates
import thread
import time
from scipy.spatial import distance
from geometry_msgs.msg import Pose
from gazebo_msgs.srv import SetModelState
from gazebo_msgs.msg import ModelState
from datetime import datetime
from std_srvs.srv import Empty
pause = rospy.ServiceProxy('/gazebo/pause_physics', Empty)
unpause = rospy.ServiceProxy('/gazebo/unpause_physics', Empty)
rospy.wait_for_service("/gazebo/set_model_state")
m = rospy.ServiceProxy("/gazebo/set_model_state",SetModelState)
command = ModelState()
command.model_name = "Kwad"
from std_srvs.srv import Empty
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
velPub = rospy.Publisher('/Kwad/joint_motor_controller/command', Float64MultiArray, queue_size=4)
reset_world = rospy.ServiceProxy('/gazebo/reset_world', Empty)
fieldnames = ['reward','reward_m','reward_d','reward_y','reward_rp' , 'motor values','distance']
fieldnames2 = ['epsodic reward' , 'epsodic reward_m' , 'episodic reward_d','episodic reward_y' ,'episodic reward_rp','closest_dist']
m1 = 0
m2 = 0
m3 = 0
m4 = 0
class Critic(nn.Module):
def __init__(self , input_dims):
super(Critic , self).__init__()
self.critic = nn.Sequential(
nn.Linear(in_features= input_dims , out_features= 100),
nn.Sigmoid(),
nn.Linear(in_features= 100 , out_features= 200),
nn.Sigmoid(),
nn.Linear(in_features= 200 , out_features= 100),
nn.Sigmoid(),
nn.Linear(in_features= 100 , out_features= 1),
nn.Tanh()
)
self.optimizer = optim.Adam(self.parameters(),lr = 0.0003)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
#self.device = T.device('cpu')
self.to(self.device)
print(self.device)
def forward(self , state):
state = T.tensor(state , dtype= T.float).to(self.device)
#state = state.flatten()
#print(state)
value = self.critic(state)
#print(value ,"Value")
return value
class Actor(nn.Module):
def __init__(self , input_dims , n_actions ):
super(Actor , self).__init__()
self.actor = nn.Sequential(
nn.Linear(in_features= input_dims , out_features= 100),
nn.Sigmoid(),
nn.Linear(in_features= 100 , out_features= 200),
nn.Sigmoid(),
nn.Linear(in_features= 200 , out_features= 100),
nn.Sigmoid(),
nn.Linear(in_features= 100 , out_features= n_actions),
nn.Softmax(dim=-1)
)
self.optimizer = optim.Adam(self.parameters(), lr= 0.0009)
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
#self.device = T.device('cpu')
self.to(self.device)
def forward(self , state):
state = T.tensor(state , dtype= T.float).to(self.device)
#state = state.flatten()
#print(state)
dist = self.actor(state)
#print(dist , "dist")
dist = Categorical(dist)
return dist
class agent(object):
def __init__( self , batch_size , n_epochs , n_actions = 9 , input_dims = 44):
self.n_actions = n_actions
self.batch_size = batch_size
self.n_epochs = n_epochs
self.input_dims = input_dims
self.actor = Actor(self.input_dims , self.n_actions)
self.critic = Critic(self.input_dims)
self.gamma = 0.99 #increased horizon
self.gae_lambda = 0.95
self.policy_clip = 0.2
def get_action(self, dist):
ac = dist.sample()
#print(ac , "action")
return ac
def learn(self, states , actions , values , rewards , probs):
for i in range(self.n_epochs):
#print("epoch" , i)
st_arr ,ac_arr , old_prob_arr ,val_arr , rewards_arr , batches = self.get_batch(states , actions , values , rewards , probs)
vals = val_arr
adv = np.zeros(len(rewards_arr),dtype=np.float32)
for j in range(len(rewards_arr) -1):
discount = 1
a_t = 0
for k in range(j , len(rewards_arr) -1):
a_t += discount*(rewards_arr[k] + self.gamma*vals[k+1] - vals[k])
discount *= self.gamma*self.gae_lambda
adv[j] = a_t
#print(rewards_arr , "reward array")
#print(adv , "advantage")
adv = T.tensor(adv).to(self.actor.device)
vals = T.tensor(vals).to(self.actor.device)
for batch in batches :
sts = T.tensor(st_arr[batch]).to(self.actor.device)
old_probs = T.tensor(old_prob_arr[batch]).to(self.actor.device)
acs = T.tensor(ac_arr[batch]).to(self.actor.device)
dist = self.actor.forward(sts)
#print(dist)
cr_val = self.critic.forward(sts)
cr_val = T.squeeze(cr_val)
new_probs = dist.log_prob(acs)
prob_ratio = new_probs.exp() / old_probs.exp()
weighted_probs = adv[batch] * prob_ratio
weighted_clipped_probs = T.clamp(prob_ratio, 1-self.policy_clip,
1+self.policy_clip)*adv[batch]
actor_loss = -T.min(weighted_probs, weighted_clipped_probs).mean()
returns = adv[batch] + vals[batch]
critic_loss = (returns-cr_val)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5*critic_loss
#print(actor_loss , critic_loss , total_loss , "actor_loss , critic_loss , total_loss ")
self.actor.optimizer.zero_grad()
self.critic.optimizer.zero_grad()
total_loss.backward()
T.nn.utils.clip_grad_norm_(self.actor.parameters() ,5)
T.nn.utils.clip_grad_norm_(self.critic.parameters() , 5)
self.actor.optimizer.step()
self.critic.optimizer.step()
def get_batch(self , states , actions , values , rewards , probs):
num = len(states)
start_of_batch = np.arange(0, num, self.batch_size)
indices = np.arange(num, dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in start_of_batch]
return np.array(states) , np.array(actions , dtype= np.int) , np.array(probs) , np.array(values ,dtype=np.float) , np.array(rewards) , batches
class Environment():
def __init__(self):
self.state = []
self.reward = []
def step(self,state,action):
global m1 , m2 , m3 , m4 , global_y , global_x , lidar_distance , yaw , roll , pitch
#print(action, "Neural Network action")
#8 ACTIONS
#print(lidar_distance)
'''
if roll > 0.01 :
action = 7
elif roll< -0.01 :
action = 8
elif pitch > 0.01:
action = 6
elif pitch < -0.01:
action = 5
elif lidar_distance < 7:
action = 0
elif lidar_distance >= 7:
action = 1
print(roll, "roll")
print(action ," actions which drone is taking")
elif global_y < -0.01:
action = 7
elif global_y > 0.01:
action = 8
elif global_x < -0.01:
action = 5
elif global_x > 0.01:
action = 6
if yaw > 0.1 :
action = 4
elif yaw < -0.1 :
action = 5
'''
if action == 0 : #up
m1 = 100
m2 = 100
m3 = 100
m4 = 100
elif action == 1: #pitch+
m1 = 50
m2 = 50
m3 = 50
m4 = 50
else : #pitch-
m1 = 0
m2 = 0
m3 = 0
m4 = 0
#CONVERT TO REWARD
velocity.data = [abs(m1) ,-abs(m2) , abs(m3), -abs(m4)]
velPub.publish(velocity)
reward = self.get_reward(state ,action )
next_state = self.get_state(state)
#FIX GROUND DISTANCE DIFFERENCE OF 0.10000000149 BECAUSE OF SDF MODEL
'''if lidar_distance <= 0.11 :
lidar_distance = 0'''
return next_state , reward
#REWARDS
def get_reward(self , state , action):
global m1 , m2 , m3 , m4 ,lidar_distance ,global_y , global_x , episode , total_reward_m, total_reward_d ,total_reward_y , total_reward_rp , closest_dist , distance_goal , name_data
#print(m1,m2,m3,m4)
drone_position = [global_x , global_y , lidar_distance]
goal_position = [0 , 0 , 7]
distance_goal = distance.euclidean(goal_position , drone_position)
reward = 0
reward_m = 0
if closest_dist > distance_goal :
closest_dist = distance_goal
#DISTANCE
if distance_goal < 6 and lidar_distance < 8:
reward_d = math.exp(-0.15669996*(distance_goal**2))
else:
reward_d = -0.1
total_reward_d += reward_d
#reward += total_reward_d what is purpose of this line
#total_reward_d += reward_d
#reward = reward_m # + reward_d + reward_y + reward_rp
#reward = (reward_d/8) + ((reward_m/(5*distance_goal))/50) + (reward_y/0.6) + (reward_rp/20)
#print(reward_m , "reward_m")
'''
if ((lidar_distance < 0.1) and (action != 0)):
reward_m -= 1
if ((lidar_distance > 7) and (action != 1)):
reward_m -= 1 '''
#reward_d = 0
reward_y = 0
reward_rp = 0
#print(reward_d)
reward = reward_d
with open(name_data + '.csv','a') as csv_file:
csv_writer = csv.DictWriter(csv_file , fieldnames = fieldnames)
information = { "reward" : reward ,"reward_m" : reward_m , "reward_d" : reward_d , "reward_y" : reward_y ,"reward_rp" : reward_rp , "motor values" : [m1,m2,m3,m4] , "distance" : distance_goal }
csv_writer.writerow(information)
return reward
def get_state(self,state):
global global_x, global_y, lidar_distance, yaw, pitch, roll, m1, m2, m3 ,m4 , distance_goal
state[0] = state[1]
state[1] = state[2]
state[2] = state[3]
state[3] = state[4]
state[4] = lidar_distance
return state
# Graphs
import numpy as np
import csv
def euler_from_quaternion(x, y, z, w):
"""
Convert a quaternion into euler angles (roll, pitch, yaw)
roll is rotation around x in radians (counterclockwise)
pitch is rotation around y in radians (counterclockwise)
yaw is rotation around z in radians (counterclockwise)
"""
t0 = +2.0 * (w * x + y * z)
t1 = +1.0 - 2.0 * (x * x + y * y)
roll_x = math.atan2(t0, t1)
t2 = +2.0 * (w * y - z * x)
t2 = +1.0 if t2 > +1.0 else t2
t2 = -1.0 if t2 < -1.0 else t2
pitch_y = math.asin(t2)
t3 = +2.0 * (w * z + x * y)
t4 = +1.0 - 2.0 * (y * y + z * z)
yaw_z = math.atan2(t3, t4)
return roll_x, pitch_y, yaw_z
global roll, pitch, yaw , lidar_distance ,velocity , global_x , global_y , episode , total_reward_m, total_reward_d ,total_reward_y , total_reward_rp , closest_dist , distance_goal , name_data
velocity = Float64MultiArray()
def service():
global roll, pitch, yaw , lidar_distance , m1 , m2 , m3 , m4 ,episode , total_reward_m, total_reward_d ,total_reward_y , total_reward_rp , closest_dist , distance_goal , name_data
env = Environment()
N = 2048
batch_size = 128
n_epochs = 4
drone = agent(n_actions = 3 ,batch_size = batch_size , n_epochs = n_epochs ,input_dims = 5)
reward_history = []
Number_of_episodes = 200
#print(lidar_distance,"lidar_distance")
name = 'EP_data/data.csv'+ str(datetime.now())
with open(name,'w') as csv_file_2:
csv_writer_2 = csv.DictWriter(csv_file_2 , fieldnames = fieldnames2)
csv_writer_2.writeheader()
reward_file_name ='rewards_new_2'+str(datetime.now())
for i in range(Number_of_episodes):
print(i)
m1 = 0
m2 = 0
m3 = 0
m4 = 0
velocity.data = [0 , 0 , 0 , 0]
velPub.publish(velocity)
reset_world()
rospy.sleep(2)
done = False
drone_position = [global_x , global_y , lidar_distance]
goal_position = [0 , 0 , 7]
distance_goal = distance.euclidean(goal_position , drone_position)
state = [0]*5
j = 0
ep_reward = 0
closest_dist = 100
states=[]
values = []
actions = []
rewards = []
probs = []
total_reward_m = 0
total_reward_y = 0
total_reward_d = 0
total_reward_rp = 0
file_ = open(reward_file_name, 'a')
episode = i
name_data = 'data/data'+str(datetime.now())+ str(episode)
with open(name_data +'.csv','w') as csv_file:
csv_writer = csv.DictWriter(csv_file , fieldnames = fieldnames)
csv_writer.writeheader()
k = 0
for k in range(N):
dist = drone.actor.forward(np.array(state))
value = drone.critic.forward(np.array(state))
action = drone.get_action(dist)
prob = T.squeeze(dist.log_prob(action)).item()
#print(action)
next_state , reward = env.step(state,action)
actions.append(action)
values.append(value)
#print(reward)
states.append(state[:])
rewards.append(reward)
#dones.append(done)
probs.append(prob)
state = next_state
ep_reward = ep_reward+reward
k = k+1
if k % 512 == 0:
pause()
drone.learn(states , actions , values , rewards , probs)
unpause()
states=[]
values = []
actions = []
rewards = []
probs = []
reward_history.append(ep_reward)
#print(ep_reward)
with open(name,'a') as csv_file_2:
csv_writer_2 = csv.DictWriter(csv_file_2 , fieldnames = fieldnames2)
information2 = { "epsodic reward" : ep_reward , "epsodic reward_m" : total_reward_m , "episodic reward_d" : total_reward_d ,"episodic reward_y" :total_reward_y ,"episodic reward_rp": total_reward_rp , "closest_dist" : closest_dist}
csv_writer_2.writerow(information2)
file_.write(str(ep_reward) + str("\n"))
file_.close()
if ep_reward >= np.mean(reward_history):
T.save(drone.actor,'/home/cuda/Desktop/ac_weights/actor_weights' +str(i)+'.pth')
T.save(drone.actor,'/home/cuda/Desktop/ac_weights/actor_weights_final.pth')
def lasercall_back(msg):
global roll, pitch, yaw , lidar_distance , m1 ,m2 ,m3 , m4
distance = msg.ranges
lidar_distance = min(distance)
if (lidar_distance == inf or lidar_distance == -inf) :
lidar_distance = 0
m1 = 0
m2 = 0
m3 = 0
m4 = 0
velocity.data = [0 , 0 , 0 , 0]
velPub.publish(velocity)
reset_world()
def location_callback(msg):
global roll, pitch, yaw , lidar_distance , global_x , global_y , global_z
ind = msg.name.index('Kwad')
#print(ind)
orientationObj = msg.pose[ind].orientation
positionObj = msg.pose[ind].position
global_x = positionObj.x
global_y = positionObj.y
roll, pitch, yaw = euler_from_quaternion(orientationObj.x, orientationObj.y, orientationObj.z, orientationObj.w)
def main():
rospy.init_node('Drone_control')
rospy.Subscriber("/Kwad/scan" , LaserScan , lasercall_back)
rospy.Subscriber("/gazebo/model_states" , ModelStates , location_callback)
rospy.wait_for_service('/gazebo/reset_world')
velocity.data = [0 , 0 , 0 , 0]
velPub.publish(velocity)
thread.start_new_thread(service,())
rospy.spin()
if __name__ == main():
main()