This repository has been archived by the owner on Aug 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathrefacer.py
262 lines (231 loc) · 10.9 KB
/
refacer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import cv2
import onnxruntime as rt
import sys
from insightface.app import FaceAnalysis
sys.path.insert(1, './recognition')
from scrfd import SCRFD
from arcface_onnx import ArcFaceONNX
import os.path as osp
import os
from pathlib import Path
from tqdm import tqdm
import ffmpeg
import random
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor
from insightface.model_zoo.inswapper import INSwapper
import psutil
from enum import Enum
from insightface.app.common import Face
from insightface.utils.storage import ensure_available
import re
import subprocess
class RefacerMode(Enum):
CPU, CUDA, COREML, TENSORRT = range(1, 5)
class Refacer:
def __init__(self,force_cpu=False,colab_performance=False):
self.first_face = False
self.force_cpu = force_cpu
self.colab_performance = colab_performance
self.__check_encoders()
self.__check_providers()
self.total_mem = psutil.virtual_memory().total
self.__init_apps()
def __check_providers(self):
if self.force_cpu :
self.providers = ['CPUExecutionProvider']
else:
self.providers = rt.get_available_providers()
rt.set_default_logger_severity(4)
self.sess_options = rt.SessionOptions()
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
self.mode = RefacerMode.CPU
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CPU mode with providers {self.providers}")
elif self.colab_performance:
self.mode = RefacerMode.TENSORRT
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"TENSORRT mode with providers {self.providers}")
elif 'CoreMLExecutionProvider' in self.providers:
self.mode = RefacerMode.COREML
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"CoreML mode with providers {self.providers}")
elif 'CUDAExecutionProvider' in self.providers:
self.mode = RefacerMode.CUDA
self.use_num_cpus = 2
self.sess_options.intra_op_num_threads = 1
if 'TensorrtExecutionProvider' in self.providers:
self.providers.remove('TensorrtExecutionProvider')
print(f"CUDA mode with providers {self.providers}")
"""
elif 'TensorrtExecutionProvider' in self.providers:
self.mode = RefacerMode.TENSORRT
#self.use_num_cpus = 1
#self.sess_options.intra_op_num_threads = 1
self.use_num_cpus = mp.cpu_count()-1
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
print(f"TENSORRT mode with providers {self.providers}")
"""
def __init_apps(self):
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
model_path = os.path.join(assets_dir, 'det_10g.onnx')
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_detector = SCRFD(model_path,sess_face)
self.face_detector.prepare(0,input_size=(640, 640))
model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.rec_app = ArcFaceONNX(model_path,sess_rec)
self.rec_app.prepare(0)
model_path = 'inswapper_128.onnx'
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
self.face_swapper = INSwapper(model_path,sess_swap)
def prepare_faces(self, faces):
self.replacement_faces=[]
for face in faces:
#image1 = cv2.imread(face.origin)
if "origin" in face:
face_threshold = face['threshold']
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
if len(kpss1)<1:
raise Exception('No face detected on "Face to replace" image')
feat_original = self.rec_app.get(face['origin'], kpss1[0])
else:
face_threshold = 0
self.first_face = True
feat_original = None
print('No origin image: First face change')
#image2 = cv2.imread(face.destination)
_faces = self.__get_faces(face['destination'],max_num=1)
if len(_faces)<1:
raise Exception('No face detected on "Destination face" image')
self.replacement_faces.append((feat_original,_faces[0],face_threshold))
def __convert_video(self,video_path,output_video_path):
if self.video_has_audio:
print("Merging audio with the refaced video...")
new_path = output_video_path + str(random.randint(0,999)) + "_c.mp4"
#stream = ffmpeg.input(output_video_path)
in1 = ffmpeg.input(output_video_path)
in2 = ffmpeg.input(video_path)
out = ffmpeg.output(in1.video, in2.audio, new_path,video_bitrate=self.ffmpeg_video_bitrate,vcodec=self.ffmpeg_video_encoder)
out.run(overwrite_output=True,quiet=True)
else:
new_path = output_video_path
print("The video doesn't have audio, so post-processing is not necessary")
print(f"The process has finished.\nThe refaced video can be found at {os.path.abspath(new_path)}")
return new_path
def __get_faces(self,frame,max_num=0):
bboxes, kpss = self.face_detector.detect(frame,max_num=max_num,metric='default')
if bboxes.shape[0] == 0:
return []
ret = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = None
if kpss is not None:
kps = kpss[i]
face = Face(bbox=bbox, kps=kps, det_score=det_score)
face.embedding = self.rec_app.get(frame, kps)
ret.append(face)
return ret
def process_first_face(self,frame):
faces = self.__get_faces(frame,max_num=1)
if len(faces) != 0:
frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
return frame
def process_faces(self,frame):
faces = self.__get_faces(frame,max_num=0)
for rep_face in self.replacement_faces:
for i in range(len(faces) - 1, -1, -1):
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
if sim>=rep_face[2]:
frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
del faces[i]
break
return frame
def __check_video_has_audio(self,video_path):
self.video_has_audio = False
probe = ffmpeg.probe(video_path)
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
if audio_stream is not None:
self.video_has_audio = True
def reface_group(self, faces, frames, output):
with ThreadPoolExecutor(max_workers = self.use_num_cpus) as executor:
if self.first_face:
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames),desc="Processing frames"))
else:
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames),desc="Processing frames"))
for result in results:
output.write(result)
def reface(self, video_path, faces):
self.__check_video_has_audio(video_path)
output_video_path = os.path.join('out',Path(video_path).name)
self.prepare_faces(faces)
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Total frames: {total_frames}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frames=[]
self.k = 1
with tqdm(total=total_frames,desc="Extracting frames") as pbar:
while cap.isOpened():
flag, frame = cap.read()
if flag and len(frame)>0:
frames.append(frame.copy())
pbar.update()
else:
break
if (len(frames) > 1000):
self.reface_group(faces,frames,output)
frames=[]
cap.release()
pbar.close()
self.reface_group(faces,frames,output)
frames=[]
output.release()
return self.__convert_video(video_path,output_video_path)
def __try_ffmpeg_encoder(self, vcodec):
print(f"Trying FFMPEG {vcodec} encoder")
command = ['ffmpeg', '-y', '-f','lavfi','-i','testsrc=duration=1:size=1280x720:rate=30','-vcodec',vcodec,'testsrc.mp4']
try:
subprocess.run(command, check=True, capture_output=True).stderr
except subprocess.CalledProcessError as e:
print(f"FFMPEG {vcodec} encoder doesn't work -> Disabled.")
return False
print(f"FFMPEG {vcodec} encoder works")
return True
def __check_encoders(self):
self.ffmpeg_video_encoder='libx264'
self.ffmpeg_video_bitrate='0'
pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
command = ['ffmpeg', '-codecs', '--list-encoders']
commandout = subprocess.run(command, check=True, capture_output=True).stdout
result = commandout.decode('utf-8').split('\n')
for r in result:
if "264" in r:
encoders = re.search(pattern, r).group(1).split(' ')
for v_c in Refacer.VIDEO_CODECS:
for v_k in encoders:
if v_c == v_k:
if self.__try_ffmpeg_encoder(v_k):
self.ffmpeg_video_encoder=v_k
self.ffmpeg_video_bitrate=Refacer.VIDEO_CODECS[v_k]
print(f"Video codec for FFMPEG: {self.ffmpeg_video_encoder}")
return
VIDEO_CODECS = {
'h264_videotoolbox':'0', #osx HW acceleration
'h264_nvenc':'0', #NVIDIA HW acceleration
#'h264_qsv', #Intel HW acceleration
#'h264_vaapi', #Intel HW acceleration
#'h264_omx', #HW acceleration
'libx264':'0' #No HW acceleration
}