Neural Factorization Machines for Sparse Predictive Analytics
创新:将Embedding集合通过池化,转化为一个向量。Bi-Interaction层不需要额外的模型学习参数,更重要的是它在一个线性的时间内完成计算
原文笔记:https://mp.weixin.qq.com/s/1en7EyP3C2TP3-d4Ha0rSQ
采用Criteo数据集进行测试。数据集的处理见../data_process
文件,主要分为:
- 考虑到Criteo文件过大,因此可以通过
read_part
和sample_sum
读取部分数据进行测试; - 对缺失数据进行填充;
- 对密集数据
I1-I13
进行离散化分桶(bins=100),对稀疏数据C1-C26
进行重新编码LabelEncoder
; - 整理得到
feature_columns
; - 切分数据集,最后返回
feature_columns, (train_X, train_y), (test_X, test_y)
;
class NFM(Model):
def __init__(self, feature_columns, hidden_units, dnn_dropout=0., activation='relu', bn_use=True, embed_reg=1e-4):
"""
NFM architecture
:param feature_columns: A list. sparse column feature information.
:param hidden_units: A list. Neural network hidden units.
:param activation: A string. Activation function of dnn.
:param dnn_dropout: A scalar. Dropout of dnn.
:param bn_use: A Boolean. Use BatchNormalization or not.
:param embed_reg: A scalar. The regularizer of embedding.
"""
- file:Criteo文件;
- read_part:是否读取部分数据,
True
; - sample_num:读取部分时,样本数量,
5000000
; - test_size:测试集比例,
0.2
; - embed_dim:Embedding维度,
8
; - dnn_dropout:Dropout,
0.5
; - hidden_unit:DNN的隐藏单元,
[256, 128, 64]
; - learning_rate:学习率,
0.001
; - batch_size:
4096
; - epoch:
10
;
- 采用Criteo数据集中前
500w
条数据,最终测试集的结果为:AUC: 0.776235, loss: 0.4773
; - 采用Criteo数据集全部内容:
- 学习参数:235,156,249;
- 单个Epoch运行时间【GPU:Tesla V100S-PCI】:303s;
- 测试集结果:
AUC: 0.788981, loss: 0.4723
;