-
Notifications
You must be signed in to change notification settings - Fork 0
/
9_2_MultiGPU.py
executable file
·244 lines (188 loc) · 8.72 KB
/
9_2_MultiGPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#%%
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os.path
import re
import time
import numpy as np
import tensorflow as tf
import cifar10
batch_size=128
#train_dir='/tmp/cifar10_train'
max_steps=1000000
num_gpus=4
#log_device_placement=False
def tower_loss(scope):
"""Calculate the total loss on a single tower running the CIFAR model.
Args:
scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
Returns:
Tensor of shape [] containing the total loss for a batch of data
"""
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
# Build inference Graph.
logits = cifar10.inference(images)
# Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels)
# Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope)
# Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss')
# Compute the moving average of all individual losses and the total loss.
# loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
# loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
# for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
# loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
# tf.scalar_summary(loss_name +' (raw)', l)
# tf.scalar_summary(loss_name, loss_averages.average(l))
# with tf.control_dependencies([loss_averages_op]):
# total_loss = tf.identity(total_loss)
return total_loss
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default(), tf.device('/cpu:0'):
# Create a variable to count the number of train() calls. This equals the
# number of batches processed * FLAGS.num_gpus.
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# Calculate the learning rate schedule.
num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
batch_size)
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Calculate the gradients for each model tower.
tower_grads = []
for i in range(num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
# summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)
# Keep track of the gradients across all towers.
tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)
# Add a summary to track the learning rate.
# summaries.append(tf.scalar_summary('learning_rate', lr))
# Add histograms for gradients.
# for grad, var in grads:
# if grad is not None:
# summaries.append(
# tf.histogram_summary(var.op.name + '/gradients', grad))
# Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
# for var in tf.trainable_variables():
# summaries.append(tf.histogram_summary(var.op.name, var))
# Track the moving averages of all trainable variables.
# variable_averages = tf.train.ExponentialMovingAverage(
# cifar10.MOVING_AVERAGE_DECAY, global_step)
# variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
# train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.all_variables())
# Build the summary operation from the last tower summaries.
# summary_op = tf.merge_summary(summaries)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run(init)
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
# summary_writer = tf.train.SummaryWriter(train_dir, sess.graph)
for step in range(max_steps):
start_time = time.time()
_, loss_value = sess.run([apply_gradient_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
num_examples_per_step = batch_size * num_gpus
examples_per_sec = num_examples_per_step / duration
sec_per_batch = duration / num_gpus
format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (step, loss_value,
examples_per_sec, sec_per_batch))
# if step % 100 == 0:
# summary_str = sess.run(summary_op)
# summary_writer.add_summary(summary_str, step)
# Save the model checkpoint periodically.
if step % 1000 == 0 or (step + 1) == max_steps:
# checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, '/tmp/cifar10_train/model.ckpt', global_step=step)
cifar10.maybe_download_and_extract()
#if tf.gfile.Exists(train_dir):
# tf.gfile.DeleteRecursively(train_dir)
#tf.gfile.MakeDirs(train_dir)
train()