forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_torchscript_poros.cc
119 lines (105 loc) · 4.1 KB
/
infer_torchscript_poros.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime.h"
namespace fd = fastdeploy;
void build_test_data(std::vector<std::vector<fd::FDTensor>> &prewarm_datas, bool is_dynamic) {
if (is_dynamic == false) {
std::vector<float> inputs_data;
inputs_data.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data.size(); ++i) {
inputs_data[i] = std::rand() % 1000 / 1000.0f;
}
prewarm_datas[0][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32);
fd::FDTensor::CopyBuffer(prewarm_datas[0][0].Data(),
inputs_data.data(),
prewarm_datas[0][0].Nbytes());
return;
}
//max
std::vector<float> inputs_data_max;
inputs_data_max.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data_max.size(); ++i) {
inputs_data_max[i] = std::rand() % 1000 / 1000.0f;
}
prewarm_datas[0][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32);
fd::FDTensor::CopyBuffer(prewarm_datas[0][0].Data(),
inputs_data_max.data(),
prewarm_datas[0][0].Nbytes());
//min
std::vector<float> inputs_data_min;
inputs_data_min.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data_min.size(); ++i) {
inputs_data_min[i] = std::rand() % 1000 / 1000.0f;
}
prewarm_datas[1][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32);
fd::FDTensor::CopyBuffer(prewarm_datas[1][0].Data(),
inputs_data_min.data(),
prewarm_datas[1][0].Nbytes());
//opt
std::vector<float> inputs_data_opt;
inputs_data_opt.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data_opt.size(); ++i) {
inputs_data_opt[i] = std::rand() % 1000 / 1000.0f;
}
prewarm_datas[2][0].Resize({1, 3, 224, 224}, fd::FDDataType::FP32);
fd::FDTensor::CopyBuffer(prewarm_datas[2][0].Data(),
inputs_data_opt.data(),
prewarm_datas[2][0].Nbytes());
}
int main(int argc, char* argv[]) {
// prewarm_datas
bool is_dynamic = true;
std::vector<std::vector<fd::FDTensor>> prewarm_datas;
if (is_dynamic) {
prewarm_datas.resize(3);
prewarm_datas[0].resize(1);
prewarm_datas[1].resize(1);
prewarm_datas[2].resize(1);
} else {
prewarm_datas.resize(1);
prewarm_datas[0].resize(1);
}
build_test_data(prewarm_datas, is_dynamic);
std::string model_file = "std_resnet50_script.pt";
// setup option
fd::RuntimeOption runtime_option;
runtime_option.SetModelPath(model_file, "", fd::ModelFormat::TORCHSCRIPT);
runtime_option.UsePorosBackend();
runtime_option.UseGpu(0);
// Compile runtime
std::unique_ptr<fd::Runtime> runtime =
std::unique_ptr<fd::Runtime>(new fd::Runtime());
runtime->Init(runtime_option);
if (!runtime->Compile(prewarm_datas, runtime_option)) {
std::cerr << "--- Init FastDeploy Runitme Failed! "
<< "\n--- Model: " << model_file << std::endl;
return -1;
} else {
std::cout << "--- Init FastDeploy Runitme Done! "
<< "\n--- Model: " << model_file << std::endl;
}
std::vector<fd::FDTensor> input_tensors;
input_tensors.resize(1);
std::vector<fd::FDTensor> output_tensors;
output_tensors.resize(1);
std::vector<float> inputs_data;
inputs_data.resize(1 * 3 * 224 * 224);
for (size_t i = 0; i < inputs_data.size(); ++i) {
inputs_data[i] = std::rand() % 1000 / 1000.0f;
}
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
runtime->Infer(input_tensors, &output_tensors);
output_tensors[0].PrintInfo();
return 0;
}