forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_torchscript_poros.py
61 lines (50 loc) · 1.82 KB
/
infer_torchscript_poros.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import numpy as np
def load_example_input_datas():
"""prewarm datas"""
data_list = []
# max size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
max_inputs = [input_1]
data_list.append(tuple(max_inputs))
# min size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
min_inputs = [input_1]
data_list.append(tuple(min_inputs))
# opt size
input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
opt_inputs = [input_1]
data_list.append(tuple(opt_inputs))
return data_list
if __name__ == '__main__':
# prewarm_datas
prewarm_datas = load_example_input_datas()
# download model
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/std_resnet50_script.pt"
fd.download(model_url, path=".")
option = fd.RuntimeOption()
option.use_gpu(0)
option.use_poros_backend()
option.set_model_path(
"std_resnet50_script.pt", model_format=ModelFormat.TORCHSCRIPT)
# compile
runtime = fd.Runtime(option)
runtime.compile(prewarm_datas)
# infer
input_data_0 = np.random.rand(1, 3, 224, 224).astype("float32")
result = runtime.forward(input_data_0)
print(result[0].shape)