Skip to content

Latest commit

 

History

History
69 lines (46 loc) · 3.17 KB

README_CN.md

File metadata and controls

69 lines (46 loc) · 3.17 KB

English | 简体中文

ERNIE 3.0 模型C++部署示例

在部署前,需确认以下两个步骤

本目录下提供seq_cls_infer.cc快速完成在CPU/GPU的文本分类任务的C++部署示例。

文本分类任务

快速开始

以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的AFQMC数据集上进行文本分类任务的C++预测部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载AFQMC数据集的微调后的ERNIE 3.0模型以及词表
wget https://bj.bcebos.com/fastdeploy/models/ernie-3.0/ernie-3.0-medium-zh-afqmc.tgz
tar xvfz ernie-3.0-medium-zh-afqmc.tgz

# CPU 推理
./seq_cls_infer_demo --device cpu --model_dir ernie-3.0-medium-zh-afqmc

# GPU 推理
./seq_cls_infer_demo --device gpu --model_dir ernie-3.0-medium-zh-afqmc

运行完成后返回的结果如下:

[INFO] /paddle/FastDeploy/examples/text/ernie-3.0/cpp/seq_cls_infer.cc(93)::CreateRuntimeOption	model_path = ernie-3.0-medium-zh-afqmc/infer.pdmodel, param_path = ernie-3.0-medium-zh-afqmc/infer.pdiparams
[INFO] fastdeploy/runtime.cc(469)::Init	Runtime initialized with Backend::ORT in Device::CPU.
Batch id: 0, example id: 0, sentence 1: 花呗收款额度限制, sentence 2: 收钱码,对花呗支付的金额有限制吗, label: 1, confidence:  0.581852
Batch id: 1, example id: 0, sentence 1: 花呗支持高铁票支付吗, sentence 2: 为什么友付宝不支持花呗付款, label: 0, confidence:  0.997921

参数说明

seq_cls_infer_demo 除了以上示例的命令行参数,还支持更多命令行参数的设置。以下为各命令行参数的说明。

参数 参数说明
--model_dir 指定部署模型的目录,
--batch_size 最大可测的 batch size,默认为 1
--max_length 最大序列长度,默认为 128
--device 运行的设备,可选范围: ['cpu', 'gpu'],默认为'cpu'
--backend 支持的推理后端,可选范围: ['onnx_runtime', 'paddle', 'openvino', 'tensorrt', 'paddle_tensorrt'],默认为'onnx_runtime'
--use_fp16 是否使用FP16模式进行推理。使用tensorrt和paddle_tensorrt后端时可开启,默认为False

相关文档

ERNIE 3.0模型详细介绍

ERNIE 3.0模型导出方法

ERNIE 3.0模型Python部署方法