English | 简体中文
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- 根据开发环境,下载预编译部署库和samples代码,参考FastDeploy预编译库
本目录下提供seq_cls_infer.cc
快速完成在CPU/GPU的文本分类任务的C++部署示例。
以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的AFQMC数据集上进行文本分类任务的C++预测部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载AFQMC数据集的微调后的ERNIE 3.0模型以及词表
wget https://bj.bcebos.com/fastdeploy/models/ernie-3.0/ernie-3.0-medium-zh-afqmc.tgz
tar xvfz ernie-3.0-medium-zh-afqmc.tgz
# CPU 推理
./seq_cls_infer_demo --device cpu --model_dir ernie-3.0-medium-zh-afqmc
# GPU 推理
./seq_cls_infer_demo --device gpu --model_dir ernie-3.0-medium-zh-afqmc
运行完成后返回的结果如下:
[INFO] /paddle/FastDeploy/examples/text/ernie-3.0/cpp/seq_cls_infer.cc(93)::CreateRuntimeOption model_path = ernie-3.0-medium-zh-afqmc/infer.pdmodel, param_path = ernie-3.0-medium-zh-afqmc/infer.pdiparams
[INFO] fastdeploy/runtime.cc(469)::Init Runtime initialized with Backend::ORT in Device::CPU.
Batch id: 0, example id: 0, sentence 1: 花呗收款额度限制, sentence 2: 收钱码,对花呗支付的金额有限制吗, label: 1, confidence: 0.581852
Batch id: 1, example id: 0, sentence 1: 花呗支持高铁票支付吗, sentence 2: 为什么友付宝不支持花呗付款, label: 0, confidence: 0.997921
seq_cls_infer_demo
除了以上示例的命令行参数,还支持更多命令行参数的设置。以下为各命令行参数的说明。
参数 | 参数说明 |
---|---|
--model_dir | 指定部署模型的目录, |
--batch_size | 最大可测的 batch size,默认为 1 |
--max_length | 最大序列长度,默认为 128 |
--device | 运行的设备,可选范围: ['cpu', 'gpu'],默认为'cpu' |
--backend | 支持的推理后端,可选范围: ['onnx_runtime', 'paddle', 'openvino', 'tensorrt', 'paddle_tensorrt'],默认为'onnx_runtime' |
--use_fp16 | 是否使用FP16模式进行推理。使用tensorrt和paddle_tensorrt后端时可开启,默认为False |