forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq_cls_infer.py
executable file
·186 lines (171 loc) · 6.64 KB
/
seq_cls_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import distutils.util
import numpy as np
import fast_tokenizer
from paddlenlp.transformers import AutoTokenizer
import fastdeploy as fd
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", required=True, help="The directory of model.")
parser.add_argument(
"--vocab_path",
type=str,
default="",
help="The path of tokenizer vocab.")
parser.add_argument(
"--device",
type=str,
default='cpu',
choices=['gpu', 'cpu', 'kunlunxin'],
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default='onnx_runtime',
choices=[
'onnx_runtime', 'paddle', 'openvino', 'tensorrt', 'paddle_tensorrt'
],
help="The inference runtime backend.")
parser.add_argument(
"--batch_size", type=int, default=1, help="The batch size of data.")
parser.add_argument(
"--max_length",
type=int,
default=128,
help="The max length of sequence.")
parser.add_argument(
"--log_interval",
type=int,
default=10,
help="The interval of logging.")
parser.add_argument(
"--use_fp16",
type=distutils.util.strtobool,
default=False,
help="Wheter to use FP16 mode")
parser.add_argument(
"--use_fast",
type=distutils.util.strtobool,
default=False,
help="Whether to use fast_tokenizer to accelarate the tokenization.")
return parser.parse_args()
def batchfy_text(texts, batch_size):
batch_texts = []
batch_start = 0
while batch_start < len(texts):
batch_texts += [
texts[batch_start:min(batch_start + batch_size, len(texts))]
]
batch_start += batch_size
return batch_texts
class ErnieForSequenceClassificationPredictor(object):
def __init__(self, args):
self.tokenizer = AutoTokenizer.from_pretrained(
'ernie-3.0-medium-zh', use_faster=args.use_fast)
self.runtime = self.create_fd_runtime(args)
self.batch_size = args.batch_size
self.max_length = args.max_length
def create_fd_runtime(self, args):
option = fd.RuntimeOption()
model_path = os.path.join(args.model_dir, "infer.pdmodel")
params_path = os.path.join(args.model_dir, "infer.pdiparams")
option.set_model_path(model_path, params_path)
if args.device == 'kunlunxin':
option.use_kunlunxin()
option.use_paddle_lite_backend()
return fd.Runtime(option)
if args.device == 'cpu':
option.use_cpu()
else:
option.use_gpu()
if args.backend == 'paddle':
option.use_paddle_infer_backend()
elif args.backend == 'onnx_runtime':
option.use_ort_backend()
elif args.backend == 'openvino':
option.use_openvino_backend()
else:
option.use_trt_backend()
if args.backend == 'paddle_tensorrt':
option.enable_paddle_to_trt()
option.enable_paddle_trt_collect_shape()
trt_file = os.path.join(args.model_dir, "infer.trt")
option.set_trt_input_shape(
'input_ids',
min_shape=[1, args.max_length],
opt_shape=[args.batch_size, args.max_length],
max_shape=[args.batch_size, args.max_length])
option.set_trt_input_shape(
'token_type_ids',
min_shape=[1, args.max_length],
opt_shape=[args.batch_size, args.max_length],
max_shape=[args.batch_size, args.max_length])
if args.use_fp16:
option.enable_trt_fp16()
trt_file = trt_file + ".fp16"
option.set_trt_cache_file(trt_file)
return fd.Runtime(option)
def preprocess(self, texts, texts_pair):
data = self.tokenizer(
texts,
texts_pair,
max_length=self.max_length,
padding=True,
truncation=True)
input_ids_name = self.runtime.get_input_info(0).name
token_type_ids_name = self.runtime.get_input_info(1).name
input_map = {
input_ids_name: np.array(
data["input_ids"], dtype="int64"),
token_type_ids_name: np.array(
data["token_type_ids"], dtype="int64")
}
return input_map
def infer(self, input_map):
results = self.runtime.infer(input_map)
return results
def postprocess(self, infer_data):
logits = np.array(infer_data[0])
max_value = np.max(logits, axis=1, keepdims=True)
exp_data = np.exp(logits - max_value)
probs = exp_data / np.sum(exp_data, axis=1, keepdims=True)
out_dict = {
"label": probs.argmax(axis=-1),
"confidence": probs.max(axis=-1)
}
return out_dict
def predict(self, texts, texts_pair=None):
input_map = self.preprocess(texts, texts_pair)
infer_result = self.infer(input_map)
output = self.postprocess(infer_result)
return output
if __name__ == "__main__":
args = parse_arguments()
predictor = ErnieForSequenceClassificationPredictor(args)
texts_ds = ["花呗收款额度限制", "花呗支持高铁票支付吗"]
texts_pair_ds = ["收钱码,对花呗支付的金额有限制吗", "为什么友付宝不支持花呗付款"]
batch_texts = batchfy_text(texts_ds, args.batch_size)
batch_texts_pair = batchfy_text(texts_pair_ds, args.batch_size)
for bs, (texts,
texts_pair) in enumerate(zip(batch_texts, batch_texts_pair)):
outputs = predictor.predict(texts, texts_pair)
for i, (sentence1, sentence2) in enumerate(zip(texts, texts_pair)):
print(
f"Batch id:{bs}, example id:{i}, sentence1:{sentence1}, sentence2:{sentence2}, label:{outputs['label'][i]}, similarity:{outputs['confidence'][i]:.4f}"
)