forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_gfl.py
51 lines (40 loc) · 1.34 KB
/
infer_gfl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
required=True,
help="Path of PaddleDetection model directory")
parser.add_argument(
"--image", required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
return option
args = parse_arguments()
model_file = os.path.join(args.model_dir, "model.pdmodel")
params_file = os.path.join(args.model_dir, "model.pdiparams")
config_file = os.path.join(args.model_dir, "infer_cfg.yml")
# 配置runtime,加载模型
runtime_option = build_option(args)
model = fd.vision.detection.GFL(
model_file, params_file, config_file, runtime_option=runtime_option)
# 预测图片检测结果
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")