forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
323 lines (284 loc) · 12.9 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import json
import os
from typing import Optional, List, Union, Dict
from dataclasses import dataclass
import numpy as np
import paddle
from tqdm import tqdm
from paddlenlp.transformers import ErnieTokenizer
from paddlenlp.utils.log import logger
from extract_chinese_and_punct import ChineseAndPunctuationExtractor
InputFeature = collections.namedtuple("InputFeature", [
"input_ids", "seq_len", "tok_to_orig_start_index", "tok_to_orig_end_index",
"labels"
])
def parse_label(spo_list, label_map, tokens, tokenizer):
# 2 tags for each predicate + I tag + O tag
num_labels = 2 * (len(label_map.keys()) - 2) + 2
seq_len = len(tokens)
# initialize tag
labels = [[0] * num_labels for i in range(seq_len)]
# find all entities and tag them with corresponding "B"/"I" labels
for spo in spo_list:
for spo_object in spo['object'].keys():
# assign relation label
if spo['predicate'] in label_map.keys():
# simple relation
label_subject = label_map[spo['predicate']]
label_object = label_subject + 55
subject_tokens = tokenizer._tokenize(spo['subject'])
object_tokens = tokenizer._tokenize(spo['object']['@value'])
else:
# complex relation
label_subject = label_map[spo['predicate'] + '_' + spo_object]
label_object = label_subject + 55
subject_tokens = tokenizer._tokenize(spo['subject'])
object_tokens = tokenizer._tokenize(spo['object'][spo_object])
subject_tokens_len = len(subject_tokens)
object_tokens_len = len(object_tokens)
# assign token label
# there are situations where s entity and o entity might overlap, e.g. xyz established xyz corporation
# to prevent single token from being labeled into two different entity
# we tag the longer entity first, then match the shorter entity within the rest text
forbidden_index = None
if subject_tokens_len > object_tokens_len:
for index in range(seq_len - subject_tokens_len + 1):
if tokens[index:index +
subject_tokens_len] == subject_tokens:
labels[index][label_subject] = 1
for i in range(subject_tokens_len - 1):
labels[index + i + 1][1] = 1
forbidden_index = index
break
for index in range(seq_len - object_tokens_len + 1):
if tokens[index:index + object_tokens_len] == object_tokens:
if forbidden_index is None:
labels[index][label_object] = 1
for i in range(object_tokens_len - 1):
labels[index + i + 1][1] = 1
break
# check if labeled already
elif index < forbidden_index or index >= forbidden_index + len(
subject_tokens):
labels[index][label_object] = 1
for i in range(object_tokens_len - 1):
labels[index + i + 1][1] = 1
break
else:
for index in range(seq_len - object_tokens_len + 1):
if tokens[index:index + object_tokens_len] == object_tokens:
labels[index][label_object] = 1
for i in range(object_tokens_len - 1):
labels[index + i + 1][1] = 1
forbidden_index = index
break
for index in range(seq_len - subject_tokens_len + 1):
if tokens[index:index +
subject_tokens_len] == subject_tokens:
if forbidden_index is None:
labels[index][label_subject] = 1
for i in range(subject_tokens_len - 1):
labels[index + i + 1][1] = 1
break
elif index < forbidden_index or index >= forbidden_index + len(
object_tokens):
labels[index][label_subject] = 1
for i in range(subject_tokens_len - 1):
labels[index + i + 1][1] = 1
break
# if token wasn't assigned as any "B"/"I" tag, give it an "O" tag for outside
for i in range(seq_len):
if labels[i] == [0] * num_labels:
labels[i][0] = 1
return labels
def convert_example_to_feature(
example,
tokenizer: ErnieTokenizer,
chineseandpunctuationextractor: ChineseAndPunctuationExtractor,
label_map,
max_length: Optional[int]=512,
pad_to_max_length: Optional[bool]=None):
spo_list = example['spo_list'] if "spo_list" in example.keys() else None
text_raw = example['text']
sub_text = []
buff = ""
for char in text_raw:
if chineseandpunctuationextractor.is_chinese_or_punct(char):
if buff != "":
sub_text.append(buff)
buff = ""
sub_text.append(char)
else:
buff += char
if buff != "":
sub_text.append(buff)
tok_to_orig_start_index = []
tok_to_orig_end_index = []
orig_to_tok_index = []
tokens = []
text_tmp = ''
for (i, token) in enumerate(sub_text):
orig_to_tok_index.append(len(tokens))
sub_tokens = tokenizer._tokenize(token)
text_tmp += token
for sub_token in sub_tokens:
tok_to_orig_start_index.append(len(text_tmp) - len(token))
tok_to_orig_end_index.append(len(text_tmp) - 1)
tokens.append(sub_token)
if len(tokens) >= max_length - 2:
break
else:
continue
break
seq_len = len(tokens)
# 2 tags for each predicate + I tag + O tag
num_labels = 2 * (len(label_map.keys()) - 2) + 2
# initialize tag
labels = [[0] * num_labels for i in range(seq_len)]
if spo_list is not None:
labels = parse_label(spo_list, label_map, tokens, tokenizer)
# add [CLS] and [SEP] token, they are tagged into "O" for outside
if seq_len > max_length - 2:
tokens = tokens[0:(max_length - 2)]
labels = labels[0:(max_length - 2)]
tok_to_orig_start_index = tok_to_orig_start_index[0:(max_length - 2)]
tok_to_orig_end_index = tok_to_orig_end_index[0:(max_length - 2)]
tokens = ["[CLS]"] + tokens + ["[SEP]"]
# "O" tag for [PAD], [CLS], [SEP] token
outside_label = [[1] + [0] * (num_labels - 1)]
labels = outside_label + labels + outside_label
tok_to_orig_start_index = [-1] + tok_to_orig_start_index + [-1]
tok_to_orig_end_index = [-1] + tok_to_orig_end_index + [-1]
if seq_len < max_length:
tokens = tokens + ["[PAD]"] * (max_length - seq_len - 2)
labels = labels + outside_label * (max_length - len(labels))
tok_to_orig_start_index = tok_to_orig_start_index + [-1] * (
max_length - len(tok_to_orig_start_index))
tok_to_orig_end_index = tok_to_orig_end_index + [-1] * (
max_length - len(tok_to_orig_end_index))
token_ids = tokenizer.convert_tokens_to_ids(tokens)
return InputFeature(
input_ids=np.array(token_ids),
seq_len=np.array(seq_len),
tok_to_orig_start_index=np.array(tok_to_orig_start_index),
tok_to_orig_end_index=np.array(tok_to_orig_end_index),
labels=np.array(labels), )
class DuIEDataset(paddle.io.Dataset):
"""
Dataset of DuIE.
"""
def __init__(
self,
input_ids: List[Union[List[int], np.ndarray]],
seq_lens: List[Union[List[int], np.ndarray]],
tok_to_orig_start_index: List[Union[List[int], np.ndarray]],
tok_to_orig_end_index: List[Union[List[int], np.ndarray]],
labels: List[Union[List[int], np.ndarray, List[str], List[Dict]]]):
super(DuIEDataset, self).__init__()
self.input_ids = input_ids
self.seq_lens = seq_lens
self.tok_to_orig_start_index = tok_to_orig_start_index
self.tok_to_orig_end_index = tok_to_orig_end_index
self.labels = labels
def __len__(self):
if isinstance(self.input_ids, np.ndarray):
return self.input_ids.shape[0]
else:
return len(self.input_ids)
def __getitem__(self, item):
return {
"input_ids": np.array(self.input_ids[item]),
"seq_lens": np.array(self.seq_lens[item]),
"tok_to_orig_start_index":
np.array(self.tok_to_orig_start_index[item]),
"tok_to_orig_end_index": np.array(self.tok_to_orig_end_index[item]),
# If model inputs is generated in `collate_fn`, delete the data type casting.
"labels": np.array(
self.labels[item], dtype=np.float32),
}
@classmethod
def from_file(cls,
file_path: Union[str, os.PathLike],
tokenizer: ErnieTokenizer,
max_length: Optional[int]=512,
pad_to_max_length: Optional[bool]=None):
assert os.path.exists(file_path) and os.path.isfile(
file_path), f"{file_path} dose not exists or is not a file."
label_map_path = os.path.join(
os.path.dirname(file_path), "predicate2id.json")
assert os.path.exists(label_map_path) and os.path.isfile(
label_map_path
), f"{label_map_path} dose not exists or is not a file."
with open(label_map_path, 'r', encoding='utf8') as fp:
label_map = json.load(fp)
chineseandpunctuationextractor = ChineseAndPunctuationExtractor()
input_ids, seq_lens, tok_to_orig_start_index, tok_to_orig_end_index, labels = (
[] for _ in range(5))
dataset_scale = sum(1 for line in open(
file_path, 'r', encoding="UTF-8"))
logger.info("Preprocessing data, loaded from %s" % file_path)
with open(file_path, "r", encoding="utf-8") as fp:
lines = fp.readlines()
for line in tqdm(lines):
example = json.loads(line)
input_feature = convert_example_to_feature(
example, tokenizer, chineseandpunctuationextractor,
label_map, max_length, pad_to_max_length)
input_ids.append(input_feature.input_ids)
seq_lens.append(input_feature.seq_len)
tok_to_orig_start_index.append(
input_feature.tok_to_orig_start_index)
tok_to_orig_end_index.append(
input_feature.tok_to_orig_end_index)
labels.append(input_feature.labels)
return cls(input_ids, seq_lens, tok_to_orig_start_index,
tok_to_orig_end_index, labels)
@dataclass
class DataCollator:
"""
Collator for DuIE.
"""
def __call__(self, examples: List[Dict[str, Union[list, np.ndarray]]]):
batched_input_ids = np.stack([x['input_ids'] for x in examples])
seq_lens = np.stack([x['seq_lens'] for x in examples])
tok_to_orig_start_index = np.stack(
[x['tok_to_orig_start_index'] for x in examples])
tok_to_orig_end_index = np.stack(
[x['tok_to_orig_end_index'] for x in examples])
labels = np.stack([x['labels'] for x in examples])
return (batched_input_ids, seq_lens, tok_to_orig_start_index,
tok_to_orig_end_index, labels)
if __name__ == "__main__":
tokenizer = ErnieTokenizer.from_pretrained("ernie-1.0")
d = DuIEDataset.from_file("./data/train_data.json", tokenizer)
sampler = paddle.io.RandomSampler(data_source=d)
batch_sampler = paddle.io.BatchSampler(sampler=sampler, batch_size=2)
collator = DataCollator()
loader = paddle.io.DataLoader(
dataset=d,
batch_sampler=batch_sampler,
collate_fn=collator,
return_list=True)
for dd in loader():
model_input = {
"input_ids": dd[0],
"seq_len": dd[1],
"tok_to_orig_start_index": dd[2],
"tok_to_orig_end_index": dd[3],
"labels": dd[4]
}
print(model_input)