forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_ernie.py
138 lines (117 loc) · 4.99 KB
/
run_ernie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import paddle
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import ErnieTokenizer, ErnieForTokenClassification
from paddlenlp.metrics import ChunkEvaluator
from data import load_dict, load_dataset, parse_decodes
def convert_to_features(example, tokenizer, label_vocab):
tokens, labels = example
tokenized_input = tokenizer(
tokens, return_length=True, is_split_into_words=True)
# Token '[CLS]' and '[SEP]' will get label 'O'
labels = ['O'] + labels + ['O']
tokenized_input['labels'] = [label_vocab[x] for x in labels]
return tokenized_input['input_ids'], tokenized_input[
'token_type_ids'], tokenized_input['seq_len'], tokenized_input['labels']
@paddle.no_grad()
def evaluate(model, metric, data_loader):
model.eval()
metric.reset()
for input_ids, seg_ids, lens, labels in data_loader:
logits = model(input_ids, seg_ids)
preds = paddle.argmax(logits, axis=-1)
n_infer, n_label, n_correct = metric.compute(lens, preds, labels)
metric.update(n_infer.numpy(), n_label.numpy(), n_correct.numpy())
precision, recall, f1_score = metric.accumulate()
print("[EVAL] Precision: %f - Recall: %f - F1: %f" %
(precision, recall, f1_score))
model.train()
@paddle.no_grad()
def predict(model, data_loader, ds, label_vocab):
all_preds = []
all_lens = []
for input_ids, seg_ids, lens, labels in data_loader:
logits = model(input_ids, seg_ids)
preds = paddle.argmax(logits, axis=-1)
# Drop CLS prediction
preds = [pred[1:] for pred in preds.numpy()]
all_preds.append(preds)
all_lens.append(lens)
sentences = [example[0] for example in ds.data]
results = parse_decodes(sentences, all_preds, all_lens, label_vocab)
return results
if __name__ == '__main__':
paddle.set_device('gpu')
# Create dataset, tokenizer and dataloader.
train_ds, dev_ds, test_ds = load_dataset(datafiles=(
'./data/train.txt', './data/dev.txt', './data/test.txt'))
label_vocab = load_dict('./data/tag.dic')
tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0')
trans_func = partial(
convert_to_features, tokenizer=tokenizer, label_vocab=label_vocab)
train_ds.map(trans_func)
dev_ds.map(trans_func)
test_ds.map(trans_func)
ignore_label = -1
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype='int32'), # input_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype='int32'), # token_type_ids
Stack(dtype='int64'), # seq_len
Pad(axis=0, pad_val=ignore_label, dtype='int64') # labels
): fn(samples)
train_loader = paddle.io.DataLoader(
dataset=train_ds,
batch_size=200,
return_list=True,
collate_fn=batchify_fn)
dev_loader = paddle.io.DataLoader(
dataset=dev_ds,
batch_size=200,
return_list=True,
collate_fn=batchify_fn)
test_loader = paddle.io.DataLoader(
dataset=test_ds,
batch_size=200,
return_list=True,
collate_fn=batchify_fn)
# Define the model netword and its loss
model = ErnieForTokenClassification.from_pretrained(
"ernie-1.0", num_classes=len(label_vocab))
metric = ChunkEvaluator(label_list=label_vocab.keys(), suffix=True)
loss_fn = paddle.nn.loss.CrossEntropyLoss(ignore_index=ignore_label)
optimizer = paddle.optimizer.AdamW(
learning_rate=2e-5, parameters=model.parameters())
step = 0
for epoch in range(10):
for input_ids, token_type_ids, length, labels in train_loader:
logits = model(input_ids, token_type_ids)
loss = paddle.mean(loss_fn(logits, labels))
loss.backward()
optimizer.step()
optimizer.clear_grad()
step += 1
print("[TRAIN] Epoch:%d - Step:%d - Loss: %f" % (epoch, step, loss))
evaluate(model, metric, dev_loader)
paddle.save(model.state_dict(), './ernie_ckpt/model_%d.pdparams' % step)
preds = predict(model, test_loader, test_ds, label_vocab)
file_path = "ernie_results.txt"
with open(file_path, "w", encoding="utf8") as fout:
fout.write("\n".join(preds))
# Print some examples
print(
"The results have been saved in the file: %s, some examples are shown below: "
% file_path)
print("\n".join(preds[:10]))