forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sm90_utils.py
601 lines (516 loc) · 24 KB
/
sm90_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#################################################################################################
#
# Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Utilities for enumerating CUTLASS library SM90 kernels
"""
import argparse
import enum
from itertools import product
import math
import logging
import os.path
import shutil
import sys
import copy
from typing import Any, Optional, Sequence, Tuple
try:
import builtins
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True:
raise ImportError("Disabling attempt to import cutlass_library")
from cutlass_library.library import *
except ImportError:
from library import *
# NOTE: this is a duplicate of CudaToolkitVersionSatisfies in generator.py
def CudaToolkitVersionSatisfies(semantic_ver_string, major, minor, patch = 0):
# by default, use the latest CUDA Toolkit version
cuda_version = [11, 0, 132]
# Update cuda_version based on parsed string
if semantic_ver_string != '':
for i, x in enumerate([int(x) for x in semantic_ver_string.split('.')]):
if i < len(cuda_version):
cuda_version[i] = x
else:
cuda_version.append(x)
return cuda_version >= [major, minor, patch]
#### Step 0: define levels
# One integer level controls multiple "generators" and how many
# combinations they generate. That is the "global" level.
# "Generators" are WGMMA shapes, MMA multipliers, cluster sizes, and
# anything that is eventually involved in the Cartesian product
# which yields our kernel configurations.
# For simplicity, each generator defines their own levels,
# starting from 0. As a rule we assume 10 or fewer levels, making
# their level a digit.
# The "global" level simply stacks these digits and represents them
# as a single integer.
#
# For example, level 500 indicates cluster sizes are at level 5, MMA
# multipliers are at level 0, and WGMMA shapes are at level 0 as well.
#
# Here we define the global level to generator level mappings.
def get_wgmma_level_from_global_level(global_level: int):
return global_level % 10
def get_mma_level_from_global_level(global_level: int):
return (global_level // 10) % 10
def get_cluster_level_from_global_level(global_level: int):
return (global_level // 100) % 10
def get_pruning_level_from_global_level(global_level: int):
return (global_level // 1000) % 10
#### Step 1: generate MMA instruction shapes based on levels
try:
from .sm90_shapes import (
SM90_MMA_MULTIPLIERS,
SM90_CLUSTER_SIZES,
SM90_WGMMA_SHAPES_TF32_DENSE,
SM90_WGMMA_SHAPES_FP16_BF16_DENSE,
SM90_WGMMA_SHAPES_FP8_DENSE,
SM90_WGMMA_SHAPES_INT8_DENSE,
)
except:
from sm90_shapes import (
SM90_MMA_MULTIPLIERS,
SM90_CLUSTER_SIZES,
SM90_WGMMA_SHAPES_TF32_DENSE,
SM90_WGMMA_SHAPES_FP16_BF16_DENSE,
SM90_WGMMA_SHAPES_FP8_DENSE,
SM90_WGMMA_SHAPES_INT8_DENSE,
)
def generate_tf32_math_instruction_shapes_sm90(level: int):
assert isinstance(level, int) and level >= 0
filtered_list_of_wgmma_shapes = [
wgmma_shape for wgmma_shape, min_level in SM90_WGMMA_SHAPES_TF32_DENSE.items() if level >= min_level
]
return filtered_list_of_wgmma_shapes
def generate_fp16_bf16_math_instruction_shapes_sm90(level: int):
assert isinstance(level, int) and level >= 0
filtered_list_of_wgmma_shapes = [
wgmma_shape for wgmma_shape, min_level in SM90_WGMMA_SHAPES_FP16_BF16_DENSE.items() if level >= min_level
]
return filtered_list_of_wgmma_shapes
def generate_fp8_math_instruction_shapes_sm90(level: int):
assert isinstance(level, int) and level >= 0
filtered_list_of_wgmma_shapes = [
wgmma_shape for wgmma_shape, min_level in SM90_WGMMA_SHAPES_FP8_DENSE.items() if level >= min_level
]
return filtered_list_of_wgmma_shapes
def generate_int8_math_instruction_shapes_sm90(level: int):
assert isinstance(level, int) and level >= 0
filtered_list_of_wgmma_shapes = [
wgmma_shape for wgmma_shape, min_level in SM90_WGMMA_SHAPES_INT8_DENSE.items() if level >= min_level
]
return filtered_list_of_wgmma_shapes
###########
def generate_tf32_math_instructions_sm90(level: int):
wgmma_level = get_wgmma_level_from_global_level(level)
math_instructions = []
for math_instruction_shape in generate_tf32_math_instruction_shapes_sm90(wgmma_level):
math_instructions.append(
MathInstruction(
math_instruction_shape,
DataType.tf32, DataType.tf32, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add)
)
return math_instructions
def generate_fp16_bf16_math_instructions_sm90(level: int):
wgmma_level = get_wgmma_level_from_global_level(level)
math_instructions = []
for math_instruction_shape in generate_fp16_bf16_math_instruction_shapes_sm90(wgmma_level):
math_instructions += [
MathInstruction(
math_instruction_shape,
DataType.f16, DataType.f16, DataType.f16,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.f16, DataType.f16, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.bf16, DataType.bf16, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
]
return math_instructions
def generate_fp8_math_instructions_sm90(level: int):
wgmma_level = get_wgmma_level_from_global_level(level)
math_instructions = []
for math_instruction_shape in generate_fp8_math_instruction_shapes_sm90(wgmma_level):
math_instructions += [
MathInstruction(
math_instruction_shape,
DataType.e4m3, DataType.e4m3, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.e4m3, DataType.e5m2, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.e5m2, DataType.e4m3, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.e5m2, DataType.e5m2, DataType.f32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
]
return math_instructions
def generate_int8_math_instructions_sm90(level: int):
wgmma_level = get_wgmma_level_from_global_level(level)
math_instructions = []
for math_instruction_shape in generate_int8_math_instruction_shapes_sm90(wgmma_level):
math_instructions += [
MathInstruction(
math_instruction_shape,
DataType.s8, DataType.s8, DataType.s32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
MathInstruction(
math_instruction_shape,
DataType.u8, DataType.u8, DataType.s32,
OpcodeClass.TensorOp,
MathOperation.multiply_add),
]
return math_instructions
def make_sparse_math_instructions(math_instructions):
sparse_instructions = []
for inst in math_instructions:
if inst.opcode_class == OpcodeClass.TensorOp:
sparse_instructions.append(MathInstruction(
(inst.instruction_shape[0], inst.instruction_shape[1], inst.instruction_shape[2] * 2),
inst.element_a, inst.element_b, inst.element_accumulator,
OpcodeClass.SparseTensorOp,
inst.math_operation),)
return sparse_instructions
#### Step 2: generate tile descriptions from math instruction shapes
def is_tile_desc_valid(tile_description):
if tile_description.minimum_compute_capability != 90 or tile_description.maximum_compute_capability != 90:
return False
element_a, element_b, element_accum = (
tile_description.math_instruction.element_a,
tile_description.math_instruction.element_b,
tile_description.math_instruction.element_accumulator
)
cluster_shape, cta_shape, inst_shape = (
tile_description.cluster_shape,
tile_description.threadblock_shape,
tile_description.math_instruction.instruction_shape
)
grid_size = (
cta_shape[0] * cluster_shape[0] +
cta_shape[1] * cluster_shape[1] +
cta_shape[2] * cluster_shape[2]
)
cluster_size = cluster_shape[0] * cluster_shape[1] * cluster_shape[2]
# Maximum number of CTAs per cluster is 8 for Hopper, but up to 16 is
# allowed for non portable clusters.
if cluster_size > 16 or cluster_size < 1:
return False
if grid_size < 1:
return False
# SM90 WGMMA shapes are always 64 across M, therefore
# CTA shape across M must always be a multiple of 64.
if cta_shape[0] < 64 or cta_shape[0] % 64 != 0:
return False
# The minimum WGMMA shape across N is 8, and increments
# vary across different dtypes, but they're never smaller
# than 8. The minimum CTA shape allowed across N though is 16.
if cta_shape[1] < 16 or cta_shape[1] % 8 != 0:
return False
# SM90 WGMMA shapes across K are always 8 for 32 bit dense
# operations, 16 for 16 bit, and 32 for 8 bit. In any case,
# the CTA shape across K should be a multiple of 8 and at least
# twice the WGMMA shape across K.
if cta_shape[2] < 16 or cta_shape[2] % 8 != 0:
return False
# Minimum of 2 stages
if cta_shape[2] < inst_shape[2] or cta_shape[2] % inst_shape[2] != 0 or cta_shape[2] / inst_shape[2] < 2:
return False
# CTA shape upper bound: <256, 256, 256>
if cta_shape[0] > 256 or cta_shape[1] > 256 or cta_shape[2] > 256:
return False
return True
def get_mma_multipliers(level: int):
assert isinstance(level, int) and level >= 0
mma_level = get_mma_level_from_global_level(level)
return [
mma_mul for mma_mul, mma_min_level in SM90_MMA_MULTIPLIERS.items() if mma_level >= mma_min_level
]
def get_cluster_sizes(level: int, is_aligned: bool):
if not is_aligned:
return [(1, 1, 1)]
assert isinstance(level, int) and level >= 0
cluster_level = get_cluster_level_from_global_level(level)
return [
cluster_size for cluster_size, cluster_min_level in SM90_CLUSTER_SIZES.items() if cluster_level >= cluster_min_level
]
def generate_tile_descriptions_sm90(math_instructions, is_aligned: bool, level: int):
tile_descriptions = set()
mma_multipliers, cluster_sizes = get_mma_multipliers(level), get_cluster_sizes(level, is_aligned)
for math_inst, mma_mul, cluster_size in product(math_instructions, mma_multipliers, cluster_sizes):
tile_desc = TileDescription(
threadblock_shape=[
math_inst.instruction_shape[0] * mma_mul[0],
math_inst.instruction_shape[1] * mma_mul[1],
math_inst.instruction_shape[2] * mma_mul[2]
],
stages=0,
warp_count=[4, 1, 1],
math_instruction=math_inst,
min_compute=90,
max_compute=90,
cluster_shape=cluster_size)
# For sparse kernels K-tile is twice as large (due to 2x MMA-K size)
# Reduce it to same size as dense to afford more smem stages
if math_inst.opcode_class == OpcodeClass.SparseTensorOp:
tile_desc.threadblock_shape[2] = tile_desc.threadblock_shape[2] // 2
if is_tile_desc_valid(tile_desc):
tile_descriptions.add(tile_desc)
return tile_descriptions
#### Step 3: map tile description to valid schedules
def is_tile_desc_compatible_with_cooperative(tile_description):
# Cooperative kernels require a minimum CTA-M of 128
return tile_description.threadblock_shape[0] >= 128
def can_tile_desc_use_shmem_in_epilogue(tile_description, data_types):
dtype_a, dtype_b, dtype_c, dtype_d, dtype_acc, dtype_epi = (
data_types["a_type"],
data_types["b_type"],
data_types["c_type"],
data_types["d_type"],
data_types["acc_type"],
data_types["epi_type"]
)
mn = tile_description.threadblock_shape[0] * tile_description.threadblock_shape[1]
bitsize_c, bitsize_d = DataTypeSize[dtype_c], DataTypeSize[dtype_d]
shmem_bits_c, shmem_bits_d = bitsize_c * mn, bitsize_d * mn
shmem_bits_total = shmem_bits_c + shmem_bits_d
# Magic number: 2^20
# Existing logic suggested that tile shape 256x128 (or 128x256)
# would run out of shmem if D is FP32, and source is needed.
# That would be 256 * 128 * 32 == 2^21 (~262 KB), which is over the limit.
# Hopper's max shmem size is 228 KB, and 2^20 ~= 131 KB.
# Since epilogue can't possibly use ALL of the shmem available
# we can just settle on 2^20 bits (~ 131 KB) being the upper bound
# we would allow for epilogue.
# This can be different for non-persistent kernels where epilogue and
# mainloop shmem is shared.
if shmem_bits_total > 2 ** 20:
return False
return True
def get_valid_schedules(tile_description, cuda_version, is_aligned, data_types, layout,
instantiation_level, enable_fp8_fast_acc=True):
# Level 0: prune according to existing generator.py behavior
# Level >= 1: no pruning
level = get_pruning_level_from_global_level(instantiation_level)
schedules = []
stream_k_schedules = []
if not is_tile_desc_valid(tile_description):
return schedules, stream_k_schedules
FP16_TYPES = [DataType.f16, DataType.bf16]
is_fp16 = data_types["a_type"] in FP16_TYPES and data_types["b_type"] in FP16_TYPES
FP8_TYPES = [DataType.e4m3, DataType.e5m2]
is_fp8 = data_types["a_type"] in FP8_TYPES and data_types["b_type"] in FP8_TYPES
can_do_fp8_fast_accum = is_fp8 and enable_fp8_fast_acc
FP32_TYPES = [DataType.f32, DataType.tf32]
is_fp32 = data_types["a_type"] in FP32_TYPES and data_types["b_type"] in FP32_TYPES
requires_transposed_epilogue = is_fp32 and layout[0][0] == LayoutType.RowMajor and layout[1][0] == LayoutType.RowMajor
is_sparse = tile_description.math_instruction.opcode_class == OpcodeClass.SparseTensorOp
can_do_cooperative = is_tile_desc_compatible_with_cooperative(tile_description)
can_do_tma_epilogue = is_aligned and not requires_transposed_epilogue and can_tile_desc_use_shmem_in_epilogue(tile_description, data_types)
default_epilogue = EpilogueScheduleType.NoSmemWarpSpecialized if not requires_transposed_epilogue else EpilogueScheduleType.EpilogueTransposed
auto_epilogue = EpilogueScheduleType.ScheduleAuto if not requires_transposed_epilogue else EpilogueScheduleType.EpilogueTransposed
cta_m, cta_n, cta_k = (
tile_description.threadblock_shape[0],
tile_description.threadblock_shape[1],
tile_description.threadblock_shape[2]
)
c_type = data_types["c_type"]
d_type = data_types["d_type"]
is_void_c = c_type == DataType.void
# Early pruning
if level < 1:
# Don't stamp out FP16/BF16 kernels smaller than or equal to 64x128x64
if is_fp16 and cta_m <= 64 and cta_n <= 128 and cta_k <= 64:
return [], []
# FP8 configs with CTA tile larger than or equal to 256x128x128 limit data types and schedules
is_large_fp8_tile = is_fp8 and cta_m >= 256 and cta_n >= 128 and cta_k >= 128
if is_large_fp8_tile:
# Only void-C, and only FP8 outputs allowed
if not is_void_c or d_type not in FP8_TYPES:
return [], []
if CudaToolkitVersionSatisfies(cuda_version, 12, 1) and can_do_cooperative and can_do_tma_epilogue:
return [
[
KernelScheduleType.TmaWarpSpecializedCooperative if not is_sparse else KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecializedCooperative
],
[
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecializedCooperative
],
] , []
return [], []
if is_fp8 and not is_large_fp8_tile:
valid_dtypes_for_c = [DataType.f32, DataType.bf16, DataType.f16]
# Prune all configs with fp8 source, and all configs with non-fp8 output
# that have different dtypes for source and output.
if c_type not in valid_dtypes_for_c or (d_type not in FP8_TYPES and c_type != d_type):
return [], []
# FP32/TF32 kernels don't stamp out void-C
if is_fp32 and is_void_c:
return [], []
# Void-c only makes a difference for TMA epilogues
if is_void_c and not can_do_tma_epilogue:
return [], []
if not is_aligned:
schedules = [[KernelScheduleType.CpAsyncWarpSpecialized,
default_epilogue]]
stream_k_schedules = []
if CudaToolkitVersionSatisfies(cuda_version, 12, 1) and can_do_cooperative:
schedules.append([
KernelScheduleType.CpAsyncWarpSpecializedCooperative,
default_epilogue
])
stream_k_schedules.append([
KernelScheduleType.CpAsyncWarpSpecializedCooperative,
default_epilogue
])
return schedules, stream_k_schedules
schedules = []
# Pruning: emit Void-C kernels with persistent kernels only
if level >= 1 or not is_void_c:
# Pruning: don't stamp out fp8 kernels with auto schedule
if not is_fp8:
schedules.append([KernelScheduleType.ScheduleAuto, auto_epilogue])
if not (is_fp8 and is_sparse):
schedules.append([KernelScheduleType.TmaWarpSpecialized, default_epilogue])
stream_k_schedules = []
if CudaToolkitVersionSatisfies(cuda_version, 12, 1):
# Pruning: don't stamp out fp8 ping-ponging kernel with non-tma epilogue
if not is_fp8 or level >= 1:
schedules.append([KernelScheduleType.TmaWarpSpecializedPingpong, default_epilogue])
if can_do_fp8_fast_accum:
schedules.append([KernelScheduleType.TmaWarpSpecializedFP8FastAccum, default_epilogue])
schedules.append([KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum, default_epilogue])
if can_do_cooperative:
# Sparse kernels only support FastAccum FP8 mainloop
if not (is_fp8 and is_sparse):
schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperative,
default_epilogue
])
stream_k_schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperative,
default_epilogue
])
if can_do_fp8_fast_accum:
schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
default_epilogue
])
stream_k_schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
default_epilogue
])
# persistent kernels with TMA epilogues
if can_do_tma_epilogue:
assert not requires_transposed_epilogue
# Inconsistency: fp8 pingpong only gets stamped out with fast accum
if not is_fp8 or level >= 1:
schedules.append([
KernelScheduleType.TmaWarpSpecializedPingpong,
EpilogueScheduleType.TmaWarpSpecialized
])
if can_do_fp8_fast_accum:
schedules.append([
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecialized
])
if can_do_cooperative:
# Sparse kernels only support FastAccum FP8 mainloop
if not (is_fp8 and is_sparse):
schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperative,
EpilogueScheduleType.TmaWarpSpecializedCooperative
])
stream_k_schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperative,
EpilogueScheduleType.TmaWarpSpecializedCooperative
])
if can_do_fp8_fast_accum:
schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecializedCooperative
])
stream_k_schedules.append([
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecializedCooperative
])
return schedules, stream_k_schedules
#### Misc: helpers
def generate_data_types_from_math_instruction(math_instruction, element_source = None, element_dest = None, element_epilogue = None):
element_a, element_b = math_instruction.element_a, math_instruction.element_b
element_accumulator = math_instruction.element_accumulator
element_c = element_source or element_accumulator
element_d = element_dest or element_accumulator
element_epilogue = element_epilogue or element_accumulator
data_types = {
"a_type" : element_a,
"b_type" : element_b,
"c_type" : element_c,
"d_type" : element_d,
"acc_type" : element_accumulator,
"epi_type" : element_epilogue
}
return data_types
def fix_alignments(data_types, layout, alignment_bits = 128):
operand_keys = ["a_type", "b_type", "c_type"]
operands_to_fix = ["c_type"]
new_layout = []
assert len(layout) == len(operand_keys)
for i, k in enumerate(operand_keys):
assert k in data_types and data_types[k] in DataTypeSize
dtype = data_types[k]
dtype_size_bits = DataTypeSize[dtype]
layout_type = layout[i][0]
layout_alignment = layout[i][1]
# Don't modify alignment if dtype's been changed to void
if k in operands_to_fix and dtype_size_bits >= 1:
layout_alignment = alignment_bits // dtype_size_bits
new_layout.append([layout_type, layout_alignment])
return new_layout