-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcsampler.py
46 lines (36 loc) · 1.52 KB
/
csampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from torch.utils.data.sampler import Sampler
import numpy as np
import random
class categoryRandomSampler(Sampler):
def __init__(self, numBatchCategory, targets, batch_size):
"""
This sampler will sample numBatchCategory categories in each batch.
"""
self.targets = list(targets)
self.batch_size = batch_size
self.num_samples = len(targets)
self.numBatchCategory = numBatchCategory
self.num_categories = max(targets) + 1
self.category_idxs = {}
self.categorys = list(range(self.num_categories))
for i in range(self.num_categories):
self.category_idxs[i] = []
for i in range(self.num_samples):
self.category_idxs[targets[i]].append(i)
def __iter__(self):
num_batches = self.num_samples//self.batch_size
selected = []
for i in range(num_batches):
batch = []
random.shuffle(self.categorys)
categories_selcted = self.categorys[:self.numBatchCategory]
# categories_selcted = np.random.randint(self.num_categories, size=self.numBatchCategory)
for j in categories_selcted:
random.shuffle(self.category_idxs[j])
batch.extend(self.category_idxs[j][:int(self.batch_size//self.numBatchCategory)])
random.shuffle(batch)
selected.extend(batch)
return iter(torch.LongTensor(selected))
def __len__(self):
return self.num_samples