You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For the CIFAR-100 dataset, using the first set of hyperparameters
The first set of hyperparameters follows the settings of Haase et al.
《Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets》
Daniel Haase∗ Manuel Amthor∗
ZEISS Microscopy ZEISS Microscopy
Orig——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
3.066M
68.5M
75.37%
MobileNetv3-large(BSConv-S)
3.066M
68.5M
77.87%
ResNet-20
0.278M
41.4M
68.12%
ResNet-110(BSConv-U)
0.245M
41.8M
71.58%
WideResNet-40-3
5.056M
735.8M
76.23%
WideResNet-40-8(BSConv-U)
4.286M
675.1M
77.79%
Ours——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
3.067M
54.6M ↓
75.71%
MobileNetv3-large(BSConv-S)
3.067M
54.6M ↓
78.36%
ResNet-20
0.282M
37.8M ↓
68.30%
ResNet-110(BSConv-U)
0.249M
38.6M ↓
71.62%
WideResNet-40-3
5.287M
668.7M ↓
76.28%
WideResNet-40-8(BSConv-U)
4.457M
615.6M ↓
78.05%
For the CIFAR-100 dataset, using the second set of hyperparameters
Orig——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.330M
68.8M
76.00%
Parc-MobileNet-v2
2.348M
91.3M
76.20%
GhostNet
4.029M
44.6M
74.00%
ShuffleNet-v2
1.356M
46.2M
70.90%
Ours——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.331M
54.7M ↓
76.60%
Parc-MobileNet-v2
2.348M
73.0M ↓
76.60%
GhostNet
4.030M
34.8M ↓
74.10%
ShuffleNet-v2
1.358M
35.7M ↓
71.50%
For Stanford Dogs dataset
Orig——Stanford Dogs
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
3.086M
230.1M
51.07%
MobileNetv3-large-bsconvs
3.086M
230.1M
59.68%
Ours——Stanford Dogs
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
3.087M
212.6M ↓
54.11%
MobileNetv3-large-bsconvs
3.087M
212.6M ↓
60.79%
For ImageNet dataset
Orig——ImageNet
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
5.480M
232.5M
69.50%
Ours——ImageNet
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
5.481M
214.9M ↓
69.50%
Inference Latency
Orig——Latency
Model
AMD Ryzen 5 5600H
MediaTek Tiangui 1000+
MobileNetv3-large
8.5ms
27.0ms
Parc-MobileNet-v2
8.7ms
37.4ms
GhostNet
11.4ms
36.6ms
ShuffleNet-v2
6.2ms
19.4ms
Ours——Latency
Model
AMD Ryzen 5 5600H
MediaTek Tiangui 1000+
MobileNetv3-large
9.0ms
26.3ms ↓
Parc-MobileNet-v2
9.3ms
34.0ms ↓
GhostNet
11.7ms
26.8ms ↓
ShuffleNet-v2
7.4ms
18.8ms ↓
Ablation Experiments on CIFAR-100
Model
orig
+Stem
+Downsampling
ours
MobileNetv3-large
76.0%
75.9%
76.4%
76.6%↑
Parc-MobileNet-v2
76.2%
76.6%
76.4%
76.6%↑
GhostNet
76.0%
74.2%
73.8%
74.1%↑
ShuffleNet-v2
70.9%
72.0%
70.4%
71.5%↑
Comparison with other downsampling (EfficientFormerv2)
《Rethinking Vision Transformers for MobileNet Size and Speed》
Yanyu Li
Snap Inc. Northeastern University
EfficientFormerv2-Downsampling——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.317M
78.0M
75.80%
Parc-MobileNet-v2
2.558M
97.5M
75.70%
GhostNet
4.092M
58.3M
74.30%
ShuffleNet-v2
2.804M
84.1M
70.60%
Ours——CIFAR-100
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.331M
54.7M
76.60%
Parc-MobileNet-v2
2.348M
73.0M
76.60%
GhostNet
4.030M
34.8M
74.10%
ShuffleNet-v2
1.358M
35.7M
71.50%
For VegFru-292 dataset
Orig——VegFru-292
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.576M
224.5M
89.20%
Parc-MobileNet-v2
2.605M
314.8M
89.10%
GhostNet
4.276M
147.9M
89.60%
ShuffleNet-v2
1.553M
148.1M
88.40%
Ours——VegFru-292
Model
Parameters
FLOPs
Accuracy
MobileNetv3-large
4.577M
205.7M ↓
89.90%
Parc-MobileNet-v2
2.605M
305.5M ↓
90.00%
GhostNet
4.276M
136.9M ↓
90.30%
ShuffleNet-v2
1.554M
130.7M ↓
87.70%
Getting started
For the BSConv folder, when using it for the first time, use "--download" to download the dataset.