-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathss_settings.py
133 lines (112 loc) · 4.66 KB
/
ss_settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import os.path as osp
from util import Map
from db_path import *
# Classes in pascal dataset
PASCAL_CATS = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car' , 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa',
'train', 'tv/monitor']
def get_cats(split, fold, num_folds=4):
'''
Returns a list of categories (for training/test) for a given fold number
Inputs:
split: specify train/val
fold : fold number, out of num_folds
num_folds: Split the set of image classes to how many folds. In BMVC paper, we use 4 folds
'''
num_cats = len(PASCAL_CATS)
assert(num_cats%num_folds==0)
val_size = int(num_cats/num_folds)
assert(fold<num_folds)
val_set = [ fold*val_size+v for v in range(val_size)]
train_set = [x for x in range(num_cats) if x not in val_set]
if split=='train':
return [PASCAL_CATS[x] for x in train_set]
else:
return [PASCAL_CATS[x] for x in val_set]
########################### The default setting ##########################################
empty_profile = Map(
###############################################
# For transforming video stream, not used
video_base_trans=None,
video_frame_trans=None,
video_noise_trans =None,
###############################################
# For transforming input images, not used
image_base_trans=None,
image_frame_trans=None,
image_noise_trans=None,
###############################################
# Do not change this part
first_label_params=[('first_label', 1., 0.)],
second_label_params=[('second_label', 1., 0.)],
###############################################
k_shot=1,
first_shape=None,
second_shape=None,
shape_divisible=1,
output_type=None,
read_mode=None, # Either "Shuffle" (for training) or "Deterministic" (for testing, random seed fixed)
# bgr=True,
# scale_256=True,
bgr=False,
scale_256=False,
mean = (0.40787055, 0.45752459, 0.4810938),
first_label_scale= 1,
first_label_mean = 0,
batch_size = 1,
video_sets=[],
image_sets=[],
areaRng = [0 , np.inf],
default_pascal_cats = PASCAL_CATS,
default_coco_cats = None,
pascal_cats = PASCAL_CATS,
coco_cats = None,
coco_path = None,
pascal_path = PASCAL_PATH,
sbd_path = SBD_PATH,
worker_num = 1)
########################### Settings for reproducing experiments ###########################
#### fold 0 ####
# Setting for training (on **training images**)
fold0_train = Map(empty_profile,
output_type='image_pair',
read_mode='shuffle',
# image_sets=['sbd_training', 'pascal_training'],
image_sets=['pascal_training',],
pascal_cats = get_cats('train',0),
# first_shape=[224,224],
# second_shape=[224,224])
# first_shape=[320,320],
# second_shape=[320,320])
# second_shape=None)
)
# Setting for testing on **test images** in unseen image classes (in total 5 classes), 5-shot
fold0_5shot_test = Map(empty_profile,
output_type='image_pair',
db_cycle = 1000,
read_mode='deterministic',
image_sets=['pascal_test'],
pascal_cats = get_cats('test',0),
# first_shape=[320,320],
# second_shape=[320,320],
# first_shape=[224,224],
# first_shape=None,
# second_shape=None,
# first_shape=[224,224],
# second_shape=[500,500],
k_shot=5)
## Setting for testing on **test images** in unseen image classes (in total 5 classes), 1-shot
fold0_1shot_test = Map(fold0_5shot_test, k_shot=1)
#### fold 1 ####
fold1_train = Map(fold0_train, pascal_cats=get_cats('train', 1))
fold1_5shot_test = Map(fold0_5shot_test, pascal_cats=get_cats('test', 1))
fold1_1shot_test = Map(fold1_5shot_test, k_shot=1)
#### fold 2 ####
fold2_train = Map(fold0_train, pascal_cats=get_cats('train', 2))
fold2_5shot_test = Map(fold0_5shot_test, pascal_cats=get_cats('test', 2))
fold2_1shot_test = Map(fold2_5shot_test, k_shot=1)
#### fold 3 ####
fold3_train = Map(fold0_train, pascal_cats=get_cats('train', 3))
fold3_5shot_test = Map(fold0_5shot_test, pascal_cats=get_cats('test', 3))
fold3_1shot_test = Map(fold3_5shot_test, k_shot=1)