-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
40 lines (40 loc) · 1.22 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Package: glmaag
Title: Adaptive LASSO and Network Regularized Generalized Linear Models
Version: 0.0.6
Date: 2019-05-09
Author: Kaiqiao Li [aut, cre],
Pei Fen Kuan [aut],
Xuefeng Wang [aut]
Maintainer: Kaiqiao Li <[email protected]>
Description: Efficient procedures for adaptive LASSO and network regularized for Gaussian, logistic, and Cox model. Provides network estimation procedure (combination of methods proposed by Ucar, et. al (2007) <doi:10.1093/bioinformatics/btm423> and Meinshausen and Buhlmann (2006) <doi:10.1214/009053606000000281>), cross validation and stability selection proposed by Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x> and Liu, Roeder and Wasserman (2010) <arXiv:1006.3316> methods. Interactive R app is available.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 6.1.1
LinkingTo:
Rcpp,
RcppArmadillo
Depends:
R (>= 3.6.0),
survival,
data.table
Imports:
Rcpp (>= 1.0.0),
methods,
stats,
Matrix,
ggplot2,
gridExtra,
maxstat,
survminer,
plotROC,
shiny,
foreach,
pROC,
huge,
OptimalCutpoints
Suggests:
knitr,
rmarkdown
VignetteBuilder: knitr