forked from QEF/q-e
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrillouin_zones.tex
541 lines (497 loc) · 21.2 KB
/
brillouin_zones.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
\documentclass[12pt,a4paper]{article}
\def\version{7.3.1}
\def\qe{{\sc Quantum ESPRESSO}}
\textwidth = 17cm
\textheight = 24cm
\topmargin =-1 cm
\oddsidemargin = 0 cm
% BEWARE: don't revert from graphicx for epsfig, because latex2html
% doesn't handle epsfig commands !!!
\usepackage{graphicx}
\usepackage{amssymb}
\begin{document}
\author{}
\date{}
\title{
\vskip 1cm
% title
\Huge Points inside the Brillouin zone \\
\Large Notes by Andrea Dal Corso (SISSA - Trieste)
}
\maketitle
\newpage
\section{Brillouin zone}
\qe\ (QE) support for the definition of high symmetry lines inside the Brillouin
zone (BZ) is still rather limited. However QE can calculate the coordinates
of the vertexes of the BZ and of particular points inside the BZ. These
notes show the shape and orientation of the BZ used by QE. The principal
direct and reciprocal lattice vectors, as implemented
in the routine \texttt{latgen}, are illustrated here together with the labels
of each point. These labels can be given as input in a band or phonon
calculation to define paths in the BZ. This feature is available with
the option \texttt{tpiba\_b} or \texttt{crystal\_b} in a \texttt{'bands'}
calculation or with the option \texttt{q\_in\_band\_form} in the input of the
\texttt{matdyn.x} code.
BEWARE: you need to explicitly specify \texttt{ibrav} to use this feature.
Lines in reciprocal space are defined by giving the coordinates of the
starting and ending points and the number of points of each line.
The coordinates of the starting and ending points can be
given explicitly with three real numbers or by giving the label of a
point known to QE.
For example:
\begin{verbatim}
X 10
gG 25
0.5 0.5 0.5 1
\end{verbatim}
indicate a path composed by two lines. The first line starts at point $X$,
ends at point $\Gamma$, and has $10$ {\bf k} points. The second line starts
at $\Gamma$, ends at the point of coordinates \texttt{(0.5,0.5,0.5)} and
has $25$ {\bf k} points. Greek labels are prefixed by the letter
\texttt{g}: \texttt{gG} indicates the $\Gamma$ point, \texttt{gS} the
$\Sigma$ point etc. Subscripts are written after the label: the point $P_1$
is indicated as \texttt{P1}. In the following section you can find the
labels of the points defined in each BZ.
There are many conventions to label high symmetry
points inside the BZ. The variable \texttt{point\_label\_type} selects the
set of labels used by QE. The default is \texttt{point\_label\_type='SC'} and
the labels have been taken from W. Setyawan and S. Curtarolo, Comp. Mat. Sci.
{\bf 49}, 299 (2010). Other choices can be more convenient in other situations.
The names reported in the web pages
\texttt{http://www.cryst.ehu.es/cryst/get\_kvec.html}
are available for some BZ. You can use them by setting
(\texttt{point\_label\_type='BI'}), others can be added in the future.
This option is available only with \texttt{ibrav$\ne$0} and for
all positive \texttt{ibrav} with the exception of the base centered
monoclinic (\texttt{ibrav=13}), and triclinic (\texttt{ibrav=14}) lattices.
In these cases you have to give all the coordinates of the {\bf k}-points.
\subsection{\texttt{ibrav=1}, simple cubic lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a (0, 1, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, 1), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, 0, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, 1, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, 1). \nonumber
\nonumber
\end{eqnarray}
The Brilloin zone is:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/cubic_bi.png}
\end{center}
\texttt{X$_1$} is available only with $\texttt{point\_label\_type='BI'}$.
\subsection{\texttt{ibrav=2}, face centered cubic lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& {a \over 2} (-1, 0, 1), \nonumber \\
{\bf a}_2 &=& {a \over 2} (0, 1, 1), \nonumber \\
{\bf a}_3 &=& {a \over 2} (-1, 1, 0), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (-1, -1, 1), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (1, 1, 1), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (-1, 1, -1). \nonumber
\nonumber
\end{eqnarray}
The Brillouin zone is:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/fcc_sc.png} \hspace{1.cm}
\includegraphics[width=7.5cm,angle=0]{images/fcc_bi.png}
\end{center}
Labels corresponding to $\texttt{point\_label\_type='SC'}$ and to
$\texttt{point\_label\_type='BI'}$ are shown on the left and on the right,
respectively.
\subsection{\texttt{ibrav=3}, body centered cubic lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=&{a \over 2} (1, 1, 1), \nonumber \\
{\bf a}_2 &=&{a \over 2} (-1, 1, 1), \nonumber \\
{\bf a}_3 &=&{a \over 2} (-1, -1, 1), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=&{2\pi \over a} (1, 0, 1), \nonumber \\
{\bf b}_2 &=&{2\pi \over a} (-1, 1, 0), \nonumber \\
{\bf b}_3 &=&{2\pi \over a} (0, -1, 1). \nonumber
\nonumber
\end{eqnarray}
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/bcc_bi.png}
\end{center}
\texttt{H$_1$} is available only with $\texttt{point\_label\_type='BI'}$.
\subsection{\texttt{ibrav=4}, hexagonal lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a (-{1 \over 2}, {\sqrt{3} \over 2}, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, {c\over a}), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, {1 \over \sqrt{3}}, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, {2 \over \sqrt{3}}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a\over c}). \nonumber
\nonumber
\end{eqnarray}
The BZ is:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/hex.png}
\end{center}
The figure has been obtained with ${c/a}=1.4$.
\subsection{\texttt{ibrav=5}, trigonal lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& a ({\sqrt{3}\over 2}\sin{\theta}, -{1\over 2} \sin{\theta},
\cos{\theta}),
\nonumber \\
{\bf a}_2 &=& a (0, \sin{\theta}, \cos{\theta}),
\nonumber \\
{\bf a}_3 &=& a (-{\sqrt{3}\over 2} \sin{\theta}, -{1\over 2} \sin{\theta},
\cos{\theta}),
\nonumber \\
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} ({1\over \sqrt{3} \sin{\theta}},
-{1 \over 3 \sin{\theta}}, {1\over 3 \cos{\theta}}), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0,
{2 \over 3 \sin{\theta}}, {1\over 3 \cos{\theta}}), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (-{1\over \sqrt{3} \sin{\theta}},
-{1 \over 3 \sin{\theta}}, {1\over 3 \cos{\theta}}), \nonumber \\
\end{eqnarray}
where $\sin{\theta}=\sqrt{2\over 3}\sqrt{1-\cos{\alpha}}$
and $\cos{\theta}=\sqrt{1\over 3}\sqrt{1 + 2 \cos{\alpha}}$ and $\alpha$
is the angle between any two primitive direct lattice vectors.
There are two possible shapes of the BZ, depending on the
value of the angle $\alpha$. For $\alpha < 90^\circ$ we
have:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/tri_1.png}
\end{center}
The figure has been obtained with $\alpha=70^\circ$.
For $90^\circ < \alpha < 120^\circ$ we have:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/tri_2.png}
\end{center}
The figure has been obtained with $\alpha=110^\circ$.
\subsection{\texttt{ibrav=6}, simple tetragonal lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a (0, 1, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, {c\over a}), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, 0, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, 1, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a\over c}). \nonumber
\nonumber
\end{eqnarray}
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/st.png}
\end{center}
The figure has been obtained with $c/a=1.4$.
\subsection{\texttt{ibrav=7}, centered tetragonal lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& {a \over 2} (1, -1, {c\over a}), \nonumber \\
{\bf a}_2 &=& {a \over 2} (1, 1, {c\over a}), \nonumber \\
{\bf a}_3 &=& {a \over 2} (-1, -1, {c\over a}), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, -1, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, 1, {a\over c}), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (-1, 0, {a\over c}). \nonumber
\nonumber
\end{eqnarray}
In this case there are two different shapes of the BZ depending on the
$c/a$ ratio. For $c/a<1$ we have:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/stc1.png}
\end{center}
The figure has been obtained with $c/a=0.5$ ($a>c$). For $c/a>1$ we have:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/stc2_sc.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/stc2.png}
\end{center}
The figure has been obtained with $c/a=1.4$ ($a<c$).
Labels corresponding to $\texttt{point\_label\_type='SC'}$ are shown on the left,
those corresponding to $\texttt{point\_label\_type='BI'}$ on the right.
\subsection{\texttt{ibrav=8}, simple orthorhombic lattice}
The primitive vectors of the direct lattice are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a (0, {b\over a}, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, {c\over a}), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, 0, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, {a\over b}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a\over c}). \nonumber
\nonumber
\end{eqnarray}
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/so.png}
\end{center}
The figure has been obtained with $b/a=1.2$ and $c/a=1.5$.
\subsection{\texttt{ibrav=9}, one-face centered orthorhombic lattice}
The direct lattice vectors are:
\begin{eqnarray}
{\bf a}_1 &=& {a \over 2} (1, {b \over a}, 0), \nonumber \\
{\bf a}_2 &=& {a \over 2} (-1, {b \over a}, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, {c \over a}), \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, {a \over b}, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (-1, {a \over b}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a \over c}). \nonumber
\nonumber
\end{eqnarray}
There is one shape that can have two orientations depending on the
ratio between of $a$ and $b$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofco_2.png} \hspace{1cm}
\includegraphics[width=6.5cm,angle=0]{images/ofco_1.png}
\end{center}
The figures have been obtained with $b/a=0.8$ and $c/a=1.4$ (left part $b<a$)
and $b/a=1.2$ and $c/a=1.4$ (right part $b>a$).
\subsection{\texttt{ibrav=10}, face centered orthorhombic lattice}
The direct lattice vectors are:
\begin{eqnarray}
{\bf a}_1 &=& {a \over 2} (1, 0, {c \over a}), \nonumber \\
{\bf a}_2 &=& {a \over 2} (1, {b \over a}, 0), \nonumber \\
{\bf a}_3 &=& {a \over 2} (0, {b \over a}, {c \over a}). \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, -{a \over b}, {a \over c}), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (1, {a \over b}, -{a \over c}), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (-1, {a \over b}, {a \over c}). \nonumber
\nonumber
\end{eqnarray}
In this case there are three different shapes
that can be rotated in different ways depending on the relative
sizes of $a$, $b$, and $c$.
If $a$ is the shortest side, there are three different shapes according
to
\begin{equation}
{1\over a^2} \lesseqqgtr
{1\over b^2} + {1\over c^2},
\label{uno}
\end{equation}
if $b$ is the shortest side there are three different shapes according to
\begin{equation}
{1\over b^2} \lesseqqgtr {1\over a^2} + {1\over c^2},
\label{due}
\end{equation}
and if $c$ is the shortest side there are
three different shapes according to
\begin{equation}
{1\over c^2} \lesseqqgtr {1\over a^2}
+ {1\over b^2}.
\label{tre}
\end{equation}
For each case there are two possibilities. If $a$
is the shortest side, we can have $b<c$ or $b>c$, if $b$ is
the shortest side, we can have $a<c$ or $a>c$, and finally
if $c$ is the shortest side we can have $a<b$ or $a>b$. In total we
have $18$ distinct cases. Not all cases give different BZ.
All the cases with the $<$ sign in Eqs.~\ref{uno}, \ref{due}, \ref{tre} give
the same shape of the BZ that differ for the relative sizes of the faces.
All the cases with the $>$ sign in Eqs.~\ref{uno}, \ref{due}, \ref{tre} give
the same shape with faces of different sizes and oriented in different ways.
Finally the particular case with the $=$ sign in Eqs.~\ref{uno},
\ref{due}, \ref{tre} give another shape
with faces of different size and different orientations.
We show all the 18 possibilities and the labels used in each case.
We start with the case in which $a$ is the shortest side and show on the
left the case $b<c$ and on the right the case $b>c$.
The first possibility is that ${1\over a^2} <
{1\over b^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofc_1.png} \hspace{1cm}
\includegraphics[width=6.5cm,angle=0]{images/ofc_2.png}
\end{center}
The figures have been obtained with $b/a=1.2$ and $c/a=1.4$ (left part $b<c$),
and with $b/a=1.4$ and $c/a=1.2$ (right part $b>c$).
The second possibility is that ${1\over a^2} =
{1\over b^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofc_13.png} \hspace{1cm}
\includegraphics[width=5.5cm,angle=0]{images/ofc_14.png}
\end{center}
The figures have been obtained with $b/a=1.2$ and $c/a=1.80906807$
(left part $b<c$) and with $b/a=1.80906807$ and $c/a=1.2$ (right part $b>c$).
The third possibility is that ${1 \over a^2} > {1\over b^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=6.5cm,angle=0]{images/ofc_7.png} \hspace{1cm}
\includegraphics[width=4.0cm,angle=0]{images/ofc_8.png}
\end{center}
The figures have been obtained with $b/a=1.2$ and $c/a=2.4$ (left part $b<c$),
and with $b/a=2.4$ and $c/a=1.2$ (right part $b>c$).
Then we consider the cases in which $b$ is the shortest side and show
on the left the case in which $a<c$ and on the right the case $a>c$.
We have the same three possibilities as before. The first possibility
is that ${1 \over b^2} < {1\over a^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofc_3.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_4.png} \hspace{1cm}
\end{center}
The figures have been obtained with $b/a=0.9$ and $c/a=1.2$
(left part $a<c$) and $b/a=0.75$ and $c/a=0.95$ (right part $a>c$).
The second possibility is that ${1 \over b^2}={1\over a^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofc_15.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_16.png}
\end{center}
The figures have been obtained with $b/a=0.8$ and $c/a=1.33333333333$ (left
part $a<c$), and $b/a=0.6$ and $c/a=0.75$ (right part $a>c$).
The third possibility is than ${1\over b^2}>{1\over a^2} + {1\over c^2}$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/ofc_9.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_10.png}
\end{center}
The figures have been obtained with $b/a=0.8$ and $c/a=2.0$ (left part $a<c$),
and with $b/a=0.4$ and $c/a=0.5$ (right part $a>c$).
Finally we consider the case in which $c$ is the shortest side and show on
the left the case in which $a<b$ and on the right the case in which $a>b$.
The first possibility is that ${1\over c^2}<{1\over a^2} + {1\over b^2}$:
\begin{center}
\includegraphics[width=6.5cm,angle=0]{images/ofc_5.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_6.png}
\end{center}
The figures have been obtained with $b/a=1.2$ and $c/a=0.85$ (left part $a<b$)
and $b/a=0.85$ and $c/a=0.75$ (right part $a>b$).
The second possibility is that ${1\over c^2}={1\over a^2} + {1\over b^2}$:
\begin{center}
\includegraphics[width=5.5cm,angle=0]{images/ofc_17.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_18.png}
\end{center}
The figures have been obtained with $b/a=1.333333333$ and $c/a=0.8$
(left part $a<b$) and with $b/a=0.66$ and $c/a=0.5508422$ (right part
$a>b$).
Finally the third possibility is that
${1\over c^2} >{1\over a^2} + {1\over b^2}$:
\begin{center}
\includegraphics[width=5.0cm,angle=0]{images/ofc_11.png} \hspace{1cm}
\includegraphics[width=7.5cm,angle=0]{images/ofc_12.png}
\end{center}
The figures have been obtained with $b/a=2.0$ and $c/a=0.8$ (left part $a<b$),
and $b/a=0.5$ and $c/a=0.4$ (right part $a>b$).
\subsection{\texttt{ibrav=11}, body centered orthorhombic lattice}
The direct lattice vectors are:
\begin{eqnarray}
{\bf a}_1 &=& {a \over 2} (1, {b \over a}, {c \over a}), \nonumber \\
{\bf a}_2 &=& {a \over 2} (-1, {b \over a}, {c \over a}), \nonumber \\
{\bf a}_3 &=& {a \over 2} (-1, -{b \over a}, {c \over a}). \nonumber
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, 0, {a \over c}), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (-1, {a \over b}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, -{a \over b}, {a \over c}). \nonumber
\nonumber
\end{eqnarray}
In this case the BZ has one shape that can be rotated in
different ways depending on the relative sizes of $a$, $b$, and $c$.
Similar orientations and BZ that differ only for the relative sizes of
the faces are obtained for the cases that have in common the longest side.
Therefore we distinguish the cases in which $a$ is the longest side
and $b<c$ or $b>c$, the cases in which $b$ is the longest side and
$a<c$ or $a>c$ and the cases in which $c$ is the longest side and $a<b$
or $a>b$. We have $6$ distinct cases.
First we take $a$ as the longest side and show
on the left the case $b<c$ and on the right the case $b>c$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/bco_4.png} \hspace{1.0cm}
\includegraphics[width=7.5cm,angle=0]{images/bco_5.png}
\end{center}
The figures have been obtained with $b/a=0.7$ and $c/a=0.85$ (left part
$b<c$) and $b/a=0.85$ and $c/a=0.7$ (right part $b>c$).
Then we take $b$ as the longest side and show on the left the case
in which $a<c$ and on the right the case in which $a>c$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/bco_2.png}\hspace{1cm}
\includegraphics[width=7.cm,angle=0]{images/bco_3.png}
\end{center}
The figures have been obtained with $b/a=1.4$ and $c/a=1.2$ (left part $a<c$)
and $b/a=1.2$ and $c/a=0.8$ (right part $a>c$).
Finally we take $c$ as the longest side and show on the left the case in
which $a<b$ and on the right the case in which $b<a$:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/bco_1.png} \hspace{1.0 cm}
\includegraphics[width=7.5cm,angle=0]{images/bco_6.png}
\end{center}
The figures have been obtained with $b/a=1.2$ and $c/a=1.4$ (left part), and
$b/a=0.8$ and $c/a=1.2$ (right part).
\subsection{\texttt{ibrav=12}, simple monoclinic lattice, c unique}
The direct lattice vectors are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a ({b \over a} \cos{\gamma}, {b \over a}\sin{\gamma}, 0), \nonumber \\
{\bf a}_3 &=& a (0, 0, {c \over a}).
\nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, -{\cos{\gamma}\over \sin{\gamma}}, 0), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, {a \over b \sin{\gamma}}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a \over c}). \nonumber
\end{eqnarray}
The Brillouin zone is:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/monoc.png}
\end{center}
The figure has been obtained with $b/a=0.8$, $c/a=1.4$ and $\cos{\gamma}=0.3$.
\subsection{\texttt{ibrav=-12}, simple monoclinic lattice, b unique}
The direct lattice vectors are:
\begin{eqnarray}
{\bf a}_1 &=& a (1, 0, 0), \nonumber \\
{\bf a}_2 &=& a (0, {b \over a}, 0), \nonumber \\
{\bf a}_3 &=& a ({c \over a} \cos{\beta}, 0, {c \over a}\sin{\beta}), \nonumber
\end{eqnarray}
while the reciprocal lattice vectors are:
\begin{eqnarray}
{\bf b}_1 &=& {2\pi \over a} (1, 0, -{\cos{\beta}\over \sin{\beta}}), \nonumber \\
{\bf b}_2 &=& {2\pi \over a} (0, {a \over b}, 0), \nonumber \\
{\bf b}_3 &=& {2\pi \over a} (0, 0, {a \over c \sin{\beta}}). \nonumber
\end{eqnarray}
The Brillouin zone is:
\begin{center}
\includegraphics[width=7.5cm,angle=0]{images/monob.png}
\end{center}
The figure has been obtained with $b/a=0.8$, $c/a=1.4$ and $\cos{\beta}=0.3$.
\subsection{\texttt{ibrav=13,14}, one-base centered monoclinic,
triclinic}
These lattices are not supported by this feature, you have to give
explicitly the coordinates of the path.
\section{Bibliography}
\noindent [1] G.F. Koster, Space groups and their representations, Academic press,
New York and London, (1957).
\noindent [2] C.J. Bradley and A.P. Cracknell, The mathematical theory of symmetry
in solids, Oxford University Press, (1972).
\noindent [3] W. Setyawan and S. Curtarolo, Comp. Mat. Sci. {\bf 49}, 299 (2010).
\noindent [4] E.S. Tasci, G. de la Flor, D. Orobengoa, C. Capillas,
J.M. Perez-Mato, M.I. Aroyo, ``An introduction to the tools hosted in the
Bilbao Crystallographic Server''. EPJ Web of Conferences 22 00009 (2012).
\end{document}