forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseTensor.cpp
517 lines (441 loc) · 20.5 KB
/
SparseTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Basic functions on sparse tensors
#include <ATen/ATen.h>
#include <ATen/Layout.h>
#include <ATen/Parallel.h>
#include <ATen/SparseTensorImpl.h>
#include <ATen/NativeFunctions.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/SparseTensorUtils.h>
#include <TH/THBlasUtils.h>
namespace at { namespace native {
using namespace at::sparse;
/******************************************************************************
* access methods
******************************************************************************/
int64_t sparse_dim_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->sparse_dim();
}
int64_t dense_dim_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->dense_dim();
}
bool is_coalesced_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->coalesced();
}
int64_t _nnz_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->nnz();
}
// Why are there so many methods to get indices and value?
// See Note [ Sparse: different methods to get indices and values ] in native_functions.yaml
Tensor _indices_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->indices();
}
Tensor _values_sparse(const SparseTensor& self) {
return get_sparse_impl(self)->values();
}
Tensor &_coalesced_sparse_(SparseTensor& self, bool coalesced) {
get_sparse_impl(self)->set_coalesced(coalesced);
return self;
}
Tensor indices_sparse(const Tensor& self) {
TORCH_CHECK(self.is_coalesced(),
"Cannot get indices on an uncoalesced tensor, please call .coalesce() first");
return get_sparse_impl(self)->indices().alias();
}
Tensor values_sparse(const Tensor& self) {
TORCH_CHECK(self.is_coalesced(),
"Cannot get values on an uncoalesced tensor, please call .coalesce() first");
return get_sparse_impl(self)->values().alias();
}
/******************************************************************************
* creation methods
* See NOTE [ Sparse: autograd and API ] for details
******************************************************************************/
/*** Helper methods ***/
SparseTensor new_sparse(const TensorOptions& options) {
AT_ASSERT(!options.is_variable()); // TODO: remove this when Variable and Tensor are merged
AT_ASSERT(options.layout() == kSparse);
TensorTypeId type_id;
if (options.device().is_cuda()) {
type_id = SparseCUDATensorId();
} else {
type_id = SparseCPUTensorId();
}
return detail::make_tensor<SparseTensorImpl>(
type_id, options.dtype());
}
/** Actual dispatched creation methods ***/
SparseTensor new_with_dims_sparse(int64_t sparse_dim, int64_t dense_dim, ArrayRef<int64_t> size, const TensorOptions& options) {
SparseTensor self = new_sparse(options);
get_sparse_impl(self)->resize_and_clear_(sparse_dim, dense_dim, size);
return self;
}
SparseTensor new_with_dims_and_tensor_sparse(
int64_t sparse_dim,
int64_t dense_dim,
ArrayRef<int64_t> size,
const LongTensor& indices,
const Tensor& values,
const TensorOptions& options) {
SparseTensor self = new_sparse(options);
get_sparse_impl(self)->resize_(sparse_dim, dense_dim, size);
// NOTE: There is no guarantee that `indices` and `values` don't contain AutogradMeta. However,
// we want to maintain the invariant that `indices_` and `values_` of a sparse tensor don't
// contain AutogradMeta, and to achieve that we shallow-copy `indices` and `values` here.
auto indices_shallow_copy = LongTensor(indices.unsafeGetTensorImpl()->shallow_copy_and_detach(
/*version_counter=*/indices.unsafeGetTensorImpl()->version_counter(),
/*allow_tensor_metadata_change=*/true));
auto values_shallow_copy = Tensor(values.unsafeGetTensorImpl()->shallow_copy_and_detach(
/*version_counter=*/values.unsafeGetTensorImpl()->version_counter(),
/*allow_tensor_metadata_change=*/true));
alias_into_sparse(self, indices_shallow_copy, values_shallow_copy);
return self;
}
/** Public creation API that dispatch to methods above **/
/** Empty init **/
Tensor empty_sparse(IntArrayRef size, const TensorOptions& options, c10::optional<MemoryFormat> optional_memory_format) {
TORCH_CHECK(!options.pinned_memory(), "Only dense CPU tensors can be pinned");
return new_with_dims_sparse(size.size(), 0, size, options);
}
/* Shape init */
Tensor sparse_coo_tensor(ArrayRef<int64_t> size, const TensorOptions& options) {
return at::_sparse_coo_tensor_with_dims(size.size(), 0, size, options.layout(at::kSparse));
}
/* Pointer-copy init */
// helper
namespace {
static inline Tensor expand_values_if_needed(const Tensor& values) {
// expand
if (values.dim() == 0) {
// Mimic Numpy behavior here and treat it as a 1D tensor
return values.expand({1});
} else {
return values;
}
}
}
Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values_, const TensorOptions& options) {
Tensor values = expand_values_if_needed(values_);
// arg checking
TORCH_CHECK(!options.has_layout() || options.layout() == kSparse, "expected sparse layout, but got layout ", options.layout());
// the following checks are redundant because they are also checked in SparseTensorImpl::set_indices_and_values_unsafe
// but we need to ensure them in order to infer the shape.
TORCH_CHECK(indices.dim() == 2, "indices must be sparse_dim x nnz, but got: ", indices.sizes())
TORCH_CHECK(!indices.is_sparse(), "expected indices to be a dense tensor, but got indices of layout ", indices.layout());
// If sizes are not given, it is inferred as max index of each dim.
int64_t sparse_dim = indices.size(0);
int64_t dense_dim = values.dim() - 1;
std::vector<int64_t> computed_sizes(sparse_dim + dense_dim);
if (indices.numel() > 0) {
// If the indices has elements in it, we infer the minimum sparse dimension sizes
// as the max value of each dim in indices.
// NB: It used to keepdim. I think that was wrong.
LongTensor min_indices = std::get</* values */ 0>(indices.min(/* dim */ 1, /* keepdim */ false));
LongTensor computed_indices_sizes = std::get</* values */ 0>(indices.max(/* dim */ 1, /* keepdim */ false));
computed_indices_sizes.add_(1); // len = max_index + 1
LongTensor cpu_min_indices = min_indices.to(at::DeviceType::CPU);
LongTensor cpu_computed_indices_sizes = computed_indices_sizes.to(at::DeviceType::CPU);
auto cpu_min_indices_accessor = cpu_min_indices.accessor<int64_t, 1>();
auto cpu_computed_indices_sizes_accessor = cpu_computed_indices_sizes.accessor<int64_t, 1>();
for (int64_t d = 0; d < sparse_dim; d++) {
int64_t min_index_in_dim = cpu_min_indices_accessor[d];
TORCH_CHECK(min_index_in_dim >= 0,
"found negative index ", min_index_in_dim, " for dim ", d);
computed_sizes[static_cast<size_t>(d)] = cpu_computed_indices_sizes_accessor[d];
}
} else {
// If the indices doesn't have elements in it, there is not enough information
// to know what the minimum sparse dimension sizes should be, and in this case
// we set them to 0
for (int64_t d = 0; d < sparse_dim; d++) {
computed_sizes[static_cast<size_t>(d)] = 0;
}
}
for (int64_t d = 0; d < dense_dim; d++) {
computed_sizes[static_cast<size_t>(sparse_dim + d)] = values.size(d+1);
}
return at::_sparse_coo_tensor_with_dims_and_tensors(
sparse_dim, dense_dim, computed_sizes, indices, values, values.options().layout(kSparse));
}
// NB: Got rid of the sizes == NULL case
Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values_, ArrayRef<int64_t> size, const TensorOptions& options) {
Tensor values = expand_values_if_needed(values_);
// arg checking
TORCH_CHECK(!options.has_layout() || options.layout() == kSparse, "expected sparse layout, but got layout ", options.layout());
// the following checks are redundant because they are also checked in SparseTensorImpl::set_indices_and_values_unsafe
// but we need to ensure them in order to infer the shape.
TORCH_CHECK(indices.dim() == 2, "indices must be sparse_dim x nnz, but got: ", indices.sizes())
TORCH_CHECK(!indices.is_sparse(), "expected indices to be a dense tensor, but got indices of layout ", indices.layout());
int64_t sparse_dim = indices.size(0);
int64_t dense_dim = values.dim() - 1;
TORCH_CHECK(size.size() == sparse_dim + dense_dim,
"number of dimensions must be sparse_dim (", sparse_dim, ") + dense_dim (", dense_dim, "), but got ", size.size());
// Check to make sure all indices are within the boundaries of `size`
if (indices.numel() > 0) {
LongTensor min_indices = std::get</* values */ 0>(indices.min(/* dim */ 1, /* keepdim */ false));
LongTensor max_indices = std::get</* values */ 0>(indices.max(/* dim */ 1, /* keepdim */ false));
LongTensor cpu_min_indices, cpu_max_indices;
if (indices.is_cuda()) {
cpu_min_indices = min_indices.to(at::DeviceType::CPU);
cpu_max_indices = max_indices.to(at::DeviceType::CPU);
} else {
cpu_min_indices = min_indices;
cpu_max_indices = max_indices;
}
auto cpu_min_indices_accessor = cpu_min_indices.accessor<int64_t, 1>();
auto cpu_max_indices_accessor = cpu_max_indices.accessor<int64_t, 1>();
for (int64_t d = 0; d < sparse_dim; d++) {
// NB: This used to sync ndim times to access each entry; now we copy
// everything to CPU first and then access it.
int64_t min_index_in_dim = cpu_min_indices_accessor[d];
TORCH_CHECK(min_index_in_dim >= 0,
"found negative index ", min_index_in_dim, " for dim ", d);
int64_t max_index_in_dim = cpu_max_indices_accessor[d];
int64_t dim_size = size[static_cast<size_t>(d)];
TORCH_CHECK(max_index_in_dim < dim_size,
"size is inconsistent with indices: for dim ", d, ", size is ", dim_size, " but found index ", max_index_in_dim);
}
}
return at::_sparse_coo_tensor_with_dims_and_tensors(
sparse_dim, dense_dim, size, indices, values, values.options().layout(kSparse));
}
// NOTE: _sparse_coo_tensor_unsafe() differs from sparse_coo_tensor()
// in that we don't check whether any indices are out of boundaries of `size`, thus avoiding a
// copy from CUDA to CPU. However, this function should ONLY be used where we know that the indices
// are guaranteed to be within bounds.
// NB: Got rid of the size == NULL case
Tensor _sparse_coo_tensor_unsafe(const Tensor& indices, const Tensor& values_, ArrayRef<int64_t> size, const TensorOptions& options) {
Tensor values = expand_values_if_needed(values_);
// arg checking
TORCH_CHECK(!options.has_layout() || options.layout() == kSparse, "expected sparse layout, but got layout ", options.layout());
int64_t sparse_dim = indices.size(0);
int64_t dense_dim = values.dim() - 1;
return at::_sparse_coo_tensor_with_dims_and_tensors(
sparse_dim, dense_dim, size, indices, values, values.options().layout(kSparse));
}
// NB: Deleted newWithSizeNd variants
SparseTensor clone_sparse(const SparseTensor& self) {
SparseTensor other = new_with_dims_sparse(self.sparse_dim(), self.dense_dim(), self.sizes(), self.options());
copy_into_sparse(other, self._indices(), self._values(), true);
return other._coalesced_(self.is_coalesced());
}
/******************************************************************************
* reshaping methods
******************************************************************************/
SparseTensor& sparse_resize_(SparseTensor& self, ArrayRef<int64_t> size, int64_t sparse_dim, int64_t dense_dim) {
get_sparse_impl(self)->resize_(sparse_dim, dense_dim, size);
return self;
}
SparseTensor& sparse_resize_and_clear_(SparseTensor& self, ArrayRef<int64_t> size, int64_t sparse_dim, int64_t dense_dim) {
get_sparse_impl(self)->resize_and_clear_(sparse_dim, dense_dim, size);
return self;
}
namespace {
bool _is_same_size_as_sparse(const SparseTensor& self, const SparseTensor& src) {
return self.sparse_dim() == src.sparse_dim() && self.dense_dim() == src.dense_dim() && self.sizes().equals(src.sizes());
}
}
SparseTensor& resize_as_sparse_(SparseTensor& self, const SparseTensor& src) {
if (!_is_same_size_as_sparse(self, src)) {
sparse_resize_(self, src.sizes(), src.sparse_dim(), src.dense_dim());
}
return self;
}
SparseTensor dense_to_sparse(const Tensor& self){
return dense_to_sparse(self, self.dim());
}
SparseTensor dense_to_sparse(const Tensor& self, int64_t sparse_dim){
int64_t dims = self.dim();
// TODO: it seems like sparse_dim == 0 could be supported even if self.dim() > 0,
// but this would take some work and doesn't seem particularly useful.
TORCH_CHECK(sparse_dim > 0 || self.dim() == 0, "sparse_dim must be >0 if dimensionality > 0");
TORCH_CHECK(sparse_dim <= dims,
"sparse_dim must be less than or equal to self.dim()");
at::TensorOptions sparse_options = self.options().layout(kSparse);
std::vector<int64_t> sizes = self.sizes().vec();
Tensor nz = self.nonzero().transpose(0, 1);
if (nz.size(1) == 0) {
return new_with_dims_sparse(sparse_dim, dims - sparse_dim, sizes, sparse_options);
}
LongTensor indices;
if (sparse_dim == dims) {
indices = nz.clone();
} else {
Tensor i = nz.narrow(0, 0, sparse_dim);
std::tie(indices, std::ignore, std::ignore) = unique_dim(i, 1);
indices = indices.contiguous(); // many sparse CUDA kernels require contiguity, see issue #12633
}
Tensor values;
if (self.dim() > 0) {
std::vector<Tensor> ix = indices.chunk(indices.size(0), 0);
values = self.index(ix).squeeze(0).clone();
} else {
AT_ASSERT(nz.sizes().equals({0, 1}));
// In this cases, indices is a clone of nz, which is a tensor of shape (0, 1).
// Given sparse tensor invariants, values should be shape (1,)
values = self.unsqueeze(0).clone();
}
Tensor sparse = at::sparse_coo_tensor(indices, values, sizes, sparse_options);
return sparse._coalesced_(true);
}
// NB: Dropped the resizeNd variants
Tensor sparse_to_dense(const SparseTensor& self) {
if(self.scalar_type() == ScalarType::Half && self.options().device().is_cpu()) {
AT_ERROR("to_dense() not supported for float16 on CPU");
}
Tensor dst = at::zeros(self.sizes(), self.options().layout(kStrided));
return dst.add_(self);
}
SparseTensor& copy_sparse_(SparseTensor& self, const SparseTensor& src, bool non_blocking) {
if (is_same_tensor(self, src)) return self;
get_sparse_impl(self)->resize_(src.sparse_dim(), src.dense_dim(), src.sizes());
copy_into_sparse(self, src._indices(), src._values(), non_blocking);
return self._coalesced_(src.is_coalesced());
}
SparseTensor coalesce_sparse_cpu(const SparseTensor& self) {
AT_ASSERT(self.defined());
AT_ASSERT(!self.is_variable()); // TODO: change this to check `.requires_grad()` and `GradMode::is_enabled()` when Variable and Tensor are merged
AT_ASSERT(self.is_sparse());
if (self.is_coalesced()) {
return self;
}
// NOTE: Since `coalesce` is not an in-place operation when `is_coalesced` is false,
// we should keep the original tensor intact and do coalesce on a copy of the tensor
if (self._nnz() < 2) {
SparseTensor dst = self.clone();
dst._coalesced_(true);
return dst;
}
LongTensor indices = self._indices();
Tensor values = self._values().contiguous();
int64_t sparse_dim = self.sparse_dim();
int64_t dense_dim = self.dense_dim();
int64_t nnz = self._nnz();
LongTensor indices_scalar = flatten_indices(indices, self.sizes());
SparseTensor dst = new_sparse(self.options());
get_sparse_impl(dst)->resize_(sparse_dim, dense_dim, self.sizes());
// TODO: is there a more idiomatic way to do this?
LongTensor newIndices = at::empty(indices.sizes(), indices.options());
Tensor newValues = at::empty(values.sizes(), values.options());
alias_into_sparse(dst, newIndices, newValues);
LongTensor indicesBuffer;
LongTensor indicesPermutation;
std::tie(indicesBuffer, indicesPermutation) = indices_scalar.sort(0);
// NB: The accessor accesses here rely on self._nnz() > 0 (tested earlier in this function)
auto newIndicesAccessor = newIndices.accessor<int64_t, 2>();
auto indicesAccessor = indices.accessor<int64_t, 2>();
auto indicesPermutationAccessor = indicesPermutation.accessor<int64_t, 1>();
auto indicesBufferAccessor = indicesBuffer.accessor<int64_t, 1>();
int64_t i = -1;
AT_DISPATCH_ALL_TYPES(
values.scalar_type(), "coalesce", [&] {
int64_t prev = -1;
int64_t blockSize = values.stride(0);
scalar_t* values_ptr = values.data<scalar_t>();
scalar_t* newValues_ptr = newValues.data<scalar_t>();
for (int64_t j = 0; j < nnz; j++) {
int64_t pos = indicesPermutationAccessor[j];
int64_t curr = indicesBufferAccessor[j];
if (curr == prev) {
if (values.numel() > 0) { // if values is an empty tensor, there are no elements to copy
THBlas_axpy<scalar_t>(blockSize, 1, values_ptr + pos * blockSize, 1, newValues_ptr + i * blockSize, 1);
}
} else {
++i;
for (int64_t d = 0; d < sparse_dim; d++) {
newIndicesAccessor[d][i] = indicesAccessor[d][pos];
}
if (values.numel() > 0) { // if values is an empty tensor, there are no elements to copy
THBlas_copy<scalar_t>(blockSize, values_ptr + pos * blockSize, 1, newValues_ptr + i * blockSize, 1);
}
}
prev = curr;
}
});
dst._coalesced_(true);
get_sparse_impl(dst)->set_nnz_and_narrow(i + 1);
return dst;
}
// --------------------------------------------------------------------
// sparse_mask(D, S) -> S
//
// Filter Tensor D by S.indices() and output a SparseTensor.
// D and S must share the same shape.
// --------------------------------------------------------------------
template <typename scalar_t>
void inline sparse_mask_out_cpu_kernel(
Tensor& r_values,
const Tensor& t,
const int64_t r_nnz,
const int64_t sparse_dim,
const LongTensor& mask_indices
) {
auto r_values_accessor = r_values.accessor<scalar_t, 1>();
auto mask_indices_accessor = mask_indices.accessor<int64_t, 2>();
scalar_t* t_ptr = t.data<scalar_t>();
at::parallel_for(0, r_nnz, 1000, [&](int64_t start, int64_t end) {
for (auto i = start; i < end; i++) {
int64_t idx = 0;
for (int64_t d = 0; d < sparse_dim; d++) {
idx += mask_indices_accessor[d][i] * t.stride(d);
}
r_values_accessor[i] = t_ptr[idx];
}
});
}
SparseTensor& sparse_mask_out_cpu(SparseTensor& r, const Tensor& t, const SparseTensor& mask) {
TORCH_CHECK(mask.is_coalesced(), "sparse_mask: mask is uncoalesced");
TORCH_CHECK(mask.sizes().equals(t.sizes()), "sparse_mask: operands have incompatible sizes; self has size ",
t.sizes(), " but mask has size ", mask.sizes());
AT_ASSERT(!t.is_cuda()); // we were supposed to have dispatched on this
TORCH_CHECK(!r.is_cuda(), "sparse_mask: expected 'out' to be CPU, but got CUDA");
TORCH_CHECK(!mask.is_cuda(), "sparse_mask: expected 'mask' to be CPU, but got CUDA");
resize_as_sparse_(r, mask);
if (mask._nnz() == 0) {
return r.zero_();
}
int64_t dim = t.dim();
int64_t sparse_dim = mask.sparse_dim();
LongTensor mask_indices = mask._indices();
Tensor mask_values = mask._values();
Tensor r_values = at::empty(mask_values.sizes(), r._values().options());
alias_into_sparse(r, mask_indices.clone(), r_values);
r._coalesced_(mask.is_coalesced());
int64_t r_nnz = mask._nnz();
get_sparse_impl(r)->set_nnz_and_narrow(r_nnz);
if (t.numel() == 0) { // if t is an empty tensor, there is no need to mask its elements
return r;
}
if (dim > sparse_dim) {
// Get a flattened sparse indices, similar to NOTE [ Flatten Sparse Indices ].
// Keeping this implementation because it is faster than flatten_indices()
LongTensor indices = at::zeros({mask._nnz()}, mask_indices.options());
for (int64_t d = 0; d < mask.sparse_dim(); d++) {
indices.mul_(mask.size(d));
indices.add_(mask_indices.select(0, d));
}
std::vector<int64_t> view_size(1 + mask.dense_dim());
view_size[0] = -1;
for (int64_t d = 0; d < mask.dense_dim(); d++) {
view_size[d + 1] = mask.size(mask.sparse_dim() + d);
}
Tensor t_view = t.view(view_size);
// TODO: Re-audit this; it used to be an indexSelect directly into r_values
at::index_select_out(r_values, t_view, 0, indices);
} else {
AT_DISPATCH_ALL_TYPES(r_values.scalar_type(), "sparse_mask", [&] {
sparse_mask_out_cpu_kernel<scalar_t>(
r_values,
t,
r_nnz,
sparse_dim,
mask_indices);
});
}
return r;
}
SparseTensor sparse_mask_cpu(const Tensor& t, const SparseTensor& mask) {
SparseTensor r = at::empty({0}, t.options().layout(kSparse));
sparse_mask_out_cpu(r, t, mask);
return r;
}
}} // namespace at::native