forked from minimaxir/gpt-3-experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
openai_api.py
120 lines (97 loc) · 3.33 KB
/
openai_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import yaml
import json
import logging
import os
import asyncio
import fire
import httpx
import time
from tqdm import trange
logger = logging.getLogger("gpt3-experiments")
logger.setLevel(logging.INFO)
logging.basicConfig(
format="%(asctime)s — %(levelname)s — %(name)s — %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
def gpt3_query(headers: dict, data: str, model: str) -> str:
r = httpx.post(
f"https://api.openai.com/v1/engines/{model}/completions",
headers=headers,
data=data,
timeout=None,
)
r_json = r.json()
if "choices" not in r_json:
return ""
return r_json["choices"][0]["text"]
async def gpt3_query_async(headers: dict, data: str, model: str) -> str:
async with httpx.AsyncClient() as client:
r = await client.post(
f"https://api.openai.com/v1/engines/{model}/completions",
headers=headers,
data=data,
timeout=None,
)
r_json = r.json()
if "choices" not in r_json:
return ""
return r_json["choices"][0]["text"]
def prompt_md(prompt: str, gen_text: str) -> str:
lines = prompt.split("\n")
prompt_bold = "\n".join([f"**{line}**" if line != "" else line for line in lines])
return f"{prompt_bold}{gen_text}"
def gpt3_generate(
prompt: str = "prompt.txt",
config_file: str = "config.yml",
markdown: bool = True,
query_async: bool = False,
) -> None:
"""
Generates texts via GPT-3 and saves them to a file.
"""
with open(config_file, "r", encoding="utf-8") as f:
c = yaml.safe_load(f)
# If prompt is a file path, load the file as the prompt.
if os.path.exists(prompt):
logger.info(f"Loading prompt from {prompt}.")
with open(prompt, "r", encoding="utf-8") as f:
prompt = f.read()
else:
logger.info(f"GPT-3 Model Prompt: {prompt}.")
extension = "md" if markdown else "txt"
sample_delim = "\n---\n" if markdown else ("=" * 20)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {c['SECRET_KEY']}",
}
data = {
"prompt": prompt,
"max_tokens": c["max_tokens"],
}
loop = asyncio.get_event_loop()
for temp in c["temperatures"]:
data.update({"temperature": temp})
n = c["num_generate"] if temp != 0.0 else 1
n_str = "samples" if n > 1 else "sample"
output_file = f"output_{str(temp).replace('.', '_')}.{extension}"
logger.info(f"Writing {n} {n_str} at temperature {temp} to {output_file}.")
if query_async:
tasks = [
gpt3_query_async(headers, json.dumps(data), c["model"])
for _ in range(n)
]
gen_texts = loop.run_until_complete(asyncio.gather(*tasks))
else:
gen_texts = []
for _ in trange(n):
gen_texts.append(gpt3_query(headers, json.dumps(data), c["model"]))
time.sleep(30)
with open(output_file, "w", encoding="utf-8") as f:
for gen_text in gen_texts:
if gen_text:
gen_text = prompt_md(prompt, gen_text) if markdown else gen_text
f.write("{}\n{}\n".format(gen_text, sample_delim))
loop.close()
if __name__ == "__main__":
fire.Fire(gpt3_generate)