The below tables are models enabled by the Intel® Neural Compressor.
Framework |
version |
model |
Accuracy |
Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec) |
INT8 |
FP32 |
Acc Ratio[(INT8-FP32)/FP32] |
INT8 |
FP32 |
Performance Ratio[INT8/FP32] |
tensorflow |
2.6.0 |
densenet121 |
73.55% |
72.89% |
0.91% |
365.23 |
303.21 |
1.20x |
tensorflow |
2.6.0 |
densenet161 |
76.27% |
76.29% |
-0.03% |
214.13 |
166.86 |
1.28x |
tensorflow |
2.6.0 |
densenet169 |
74.39% |
74.65% |
-0.35% |
291.46 |
245.82 |
1.19x |
tensorflow |
2.6.0 |
efficientnet_b0 |
77.81% |
76.75% |
1.38% |
578.37 |
450.25 |
1.28x |
tensorflow |
2.6.0 |
faster_rcnn_inception_resnet_v2 |
37.65% |
38.33% |
-1.77% |
3.49 |
2.16 |
1.61x |
tensorflow |
2.6.0 |
faster_rcnn_inception_resnet_v2_saved |
37.53% |
38.33% |
-2.09% |
3.49 |
2.17 |
1.61x |
tensorflow |
2.6.0 |
faster_rcnn_resnet101 |
30.28% |
30.39% |
-0.36% |
66.41 |
18.43 |
3.60x |
tensorflow |
2.6.0 |
faster_rcnn_resnet101_saved |
30.37% |
30.39% |
-0.07% |
66.24 |
16.45 |
4.03x |
tensorflow |
2.6.0 |
inception_resnet_v2 |
80.44% |
80.40% |
0.05% |
269.03 |
137.25 |
1.96x |
tensorflow |
2.6.0 |
inception_v1 |
70.48% |
69.74% |
1.06% |
2202.64 |
1058.20 |
2.08x |
tensorflow |
2.6.0 |
inception_v2 |
74.36% |
73.97% |
0.53% |
1751.31 |
827.81 |
2.11x |
tensorflow |
2.6.0 |
inception_v3 |
77.28% |
76.75% |
0.69% |
868.06 |
384.17 |
2.26x |
tensorflow |
2.6.0 |
inception_v4 |
80.40% |
80.27% |
0.16% |
569.48 |
197.28 |
2.89x |
tensorflow |
2.6.0 |
mask_rcnn_inception_v2 |
28.54% |
28.72% |
-0.63% |
134.03 |
51.12 |
2.62x |
tensorflow |
2.6.0 |
mask_rcnn_inception_v2_ckpt |
28.54% |
28.72% |
-0.63% |
134.34 |
51.05 |
2.63x |
tensorflow |
2.6.0 |
mobilenetv1 |
71.79% |
70.96% |
1.17% |
3831.42 |
1189.06 |
3.22x |
tensorflow |
2.6.0 |
mobilenetv2 |
71.79% |
71.76% |
0.04% |
2570.69 |
1237.62 |
2.07x |
tensorflow |
2.6.0 |
resnet101 |
77.50% |
76.45% |
1.37% |
849.62 |
345.54 |
2.46x |
tensorflow |
2.6.0 |
resnet50_fashion |
77.80% |
78.12% |
-0.41% |
3344.48 |
1766.78 |
1.90x |
tensorflow |
2.6.0 |
resnet50v1.0 |
74.11% |
74.27% |
-0.22% |
1287.00 |
495.29 |
2.60x |
tensorflow |
2.6.0 |
resnet50v1.5 |
76.82% |
76.46% |
0.47% |
1218.03 |
420.34 |
2.90x |
tensorflow |
2.6.0 |
resnetv2_101 |
72.67% |
71.87% |
1.11% |
446.03 |
312.30 |
1.43x |
tensorflow |
2.6.0 |
resnetv2_152 |
73.03% |
72.37% |
0.91% |
308.83 |
214.78 |
1.44x |
tensorflow |
2.6.0 |
resnetv2_50 |
70.33% |
69.64% |
0.99% |
701.26 |
549.75 |
1.28x |
tensorflow |
2.6.0 |
ssd_mobilenet_v1 |
22.97% |
23.13% |
-0.69% |
842.46 |
404.04 |
2.08x |
tensorflow |
2.6.0 |
ssd_mobilenet_v1_ckpt |
22.99% |
23.13% |
-0.61% |
838.22 |
400.80 |
2.09x |
tensorflow |
2.6.0 |
ssd_resnet34 |
21.69% |
22.09% |
-1.81% |
41.23 |
10.75 |
3.83x |
tensorflow |
2.6.0 |
ssd_resnet50_v1 |
37.86% |
38.00% |
-0.37% |
65.52 |
24.01 |
2.73x |
tensorflow |
2.6.0 |
ssd_resnet50_v1_ckpt |
37.81% |
38.00% |
-0.50% |
66.53 |
21.21 |
3.14x |
tensorflow |
2.6.0 |
transformer_lt |
25.87 |
25.86 |
0.07% |
15.69 |
15.72 |
1.00x |
tensorflow |
2.6.0 |
vgg16 |
72.66% |
70.89% |
2.50% |
642.67 |
166.64 |
3.86x |
tensorflow |
2.6.0 |
vgg19 |
72.72% |
71.01% |
2.41% |
519.48 |
139.24 |
3.73x |
tensorflow |
2.6.0 |
wide_deep_large_ds |
77.62% |
77.67% |
-0.07% |
8000.00 |
5263.16 |
1.52x |
Framework |
version |
model |
Accuracy |
Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec) |
INT8 |
FP32 |
Acc Ratio[(INT8-FP32)/FP32] |
INT8 |
FP32 |
Performance Ratio[INT8/FP32] |
tensorflow |
1.15.0-up3 |
bert_large_squad |
92.42 |
92.98 |
-0.61% |
23.54 |
11.64 |
2.02x |
tensorflow |
1.15.0-up3 |
bert_base_mrpc |
86.52% |
86.52% |
0.00% |
257.93 |
131.15 |
1.97x |
tensorflow |
1.15.0-up3 |
resnet_v1_50_slim |
76.37% |
75.18% |
1.58% |
1449.28 |
403.71 |
3.59x |
tensorflow |
1.15.0-up3 |
resnet_v1_101_slim |
77.49% |
76.40% |
1.43% |
803.86 |
218.53 |
3.68x |
tensorflow |
1.15.0-up3 |
resnet_v1_152_slim |
77.19% |
76.81% |
0.49% |
568.18 |
144.91 |
3.92x |
tensorflow |
1.15.0-up3 |
inception_v1_slim |
70.49% |
69.77% |
1.03% |
1941.75 |
780.03 |
2.49x |
tensorflow |
1.15.0-up3 |
inception_v2_slim |
74.35% |
73.98% |
0.50% |
1557.63 |
644.33 |
2.42x |
tensorflow |
1.15.0-up3 |
inception_v3_slim |
78.31% |
77.99% |
0.41% |
919.12 |
280.82 |
3.27x |
tensorflow |
1.15.0-up3 |
inception_v4_slim |
80.27% |
80.19% |
0.10% |
504.29 |
140.81 |
3.58x |
tensorflow |
1.15.0-up3 |
vgg16_slim |
72.78% |
70.89% |
2.67% |
582.41 |
142.07 |
4.10x |
tensorflow |
1.15.0-up3 |
vgg19_slim |
72.60% |
71.01% |
2.24% |
492.13 |
118.36 |
4.16x |
tensorflow |
1.15.0-up3 |
resnetv2_50_slim |
70.44% |
69.72% |
1.03% |
773.99 |
469.48 |
1.65x |
tensorflow |
1.15.0-up3 |
resnetv2_101_slim |
72.65% |
71.91% |
1.03% |
460.83 |
249.19 |
1.85x |
tensorflow |
1.15.0-up3 |
resnetv2_152_slim |
73.03% |
72.40% |
0.87% |
326.90 |
168.86 |
1.94x |
Framework |
version |
model |
Accuracy |
Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec) |
INT8 |
FP32 |
Acc Ratio[(INT8-FP32)/FP32] |
INT8 |
FP32 |
Performance Ratio[INT8/FP32] |
pytorch |
1.9.0+cpu |
albert_base_mrpc |
88.77% |
88.50% |
0.31% |
30.84 |
26.48 |
1.16x |
pytorch |
1.9.0+cpu |
barthez_mrpc |
83.51% |
83.81% |
-0.35% |
124.82 |
75.98 |
1.64x |
pytorch |
1.9.0+cpu |
bert_base_cola |
59.06% |
58.84% |
0.37% |
198.53 |
105.29 |
1.89x |
pytorch |
1.9.0+cpu |
bert_base_mrpc |
88.12% |
88.73% |
-0.69% |
199.32 |
107.34 |
1.86x |
pytorch |
1.8.0+cpu |
bert_base_mrpc_qat |
90% |
89.50% |
0.56% |
183.22 |
102.91 |
1.78x |
pytorch |
1.9.0+cpu |
bert_base_rte |
70.40% |
69.68% |
1.04% |
192.90 |
107.25 |
1.80x |
pytorch |
1.9.0+cpu |
bert_base_sst-2 |
91.74% |
91.86% |
-0.13% |
197.86 |
105.31 |
1.88x |
pytorch |
1.9.0+cpu |
bert_base_sts-b |
88.72% |
89.27% |
-0.62% |
203.29 |
107.03 |
1.90x |
pytorch |
1.9.0+cpu |
bert_large_cola |
62.07% |
62.57% |
-0.80% |
94.97 |
33.77 |
2.81x |
pytorch |
1.9.0+cpu |
bert_large_mrpc |
87.66% |
88.33% |
-0.75% |
94.08 |
33.84 |
2.78x |
pytorch |
1.9.0+cpu |
bert_large_qnli |
91.12% |
91.82% |
-0.76% |
93.75 |
33.73 |
2.78x |
pytorch |
1.9.0+cpu |
bert_large_rte |
72.20% |
72.56% |
-0.50% |
52.80 |
33.62 |
1.57x |
pytorch |
1.9.0+cpu |
bert_large_squad |
92.69 |
93.05 |
-0.38% |
20.93 |
11.18 |
1.87x |
pytorch |
1.9.0+cpu |
blendcnn |
68.40% |
68.40% |
0.00% |
5154.64 |
4149.38 |
1.25x |
pytorch |
1.9.0+cpu |
camembert_base_mrpc |
84.31% |
84.22% |
0.11% |
191.17 |
106.92 |
1.79x |
pytorch |
1.9.0+cpu |
ctrl_mrpc |
82.00% |
82.00% |
0.00% |
21.32 |
8.44 |
2.53x |
pytorch |
1.9.0+cpu |
deberta_mrpc |
90.04% |
90.91% |
-0.96% |
104.59 |
64.14 |
1.63x |
pytorch |
1.9.0+cpu |
dialogpt_wikitext |
36.18 |
36.18 |
0.00% |
5.78 |
5.72 |
1.01x |
pytorch |
1.9.0+cpu |
distilbert_base_mrpc |
81.17% |
80.99% |
0.21% |
330.25 |
197.78 |
1.67x |
pytorch |
1.9.0+cpu |
flaubert_mrpc |
80.38% |
80.19% |
0.23% |
361.53 |
306.37 |
1.18x |
pytorch |
1.9.0+cpu |
funnel_mrpc |
91.72% |
92.26% |
-0.58% |
122.68 |
121.45 |
1.01x |
pytorch |
1.9.0+cpu |
gpt_wikitext |
60.06 |
60.2 |
-0.23% |
19.51 |
17.99 |
1.08x |
pytorch |
1.9.0+cpu |
gpt2_mrpc |
83.82% |
83.49% |
0.39% |
113.97 |
114.36 |
1.00x |
pytorch |
1.9.0+cpu |
inception_v3 |
69.48% |
69.54% |
-0.09% |
418.59 |
207.77 |
2.01x |
pytorch |
1.9.0+cpu |
layoutlm_mrpc |
81.22% |
78.01% |
4.12% |
178.86 |
100.63 |
1.78x |
pytorch |
1.9.0+cpu |
longformer_mrpc |
90.88% |
91.46% |
-0.64% |
20.72 |
15.97 |
1.30x |
pytorch |
1.9.0+cpu |
marianmt_wmt_en_ro |
22.39 |
22.23 |
0.72% |
2.95 |
2.77 |
1.06x |
pytorch |
1.9.0+cpu |
maskrcnn_fx |
37.70% |
37.80% |
-0.26% |
84.81 |
51.67 |
1.64x |
pytorch |
1.9.0+cpu |
mbart_wnli |
56.34% |
56.34% |
0.00% |
59.14 |
28.01 |
2.11x |
pytorch |
1.9.0+cpu |
mobilenet_v2 |
70.59% |
71.86% |
-1.76% |
658.76 |
494.80 |
1.33x |
pytorch |
1.9.0+cpu |
pegasus_billsum |
50.23 |
51.21 |
-1.91% |
0.25 |
0.17 |
1.48x |
pytorch |
1.9.0+cpu |
peleenet |
71.61% |
72.08% |
-0.66% |
461.47 |
359.58 |
1.28x |
pytorch |
1.9.0+cpu |
reformer_crime_and_punishment |
6.55 |
6.5 |
0.82% |
214.78 |
209.82 |
1.02x |
pytorch |
1.9.0+cpu |
resnet18 |
69.59% |
69.76% |
-0.24% |
692.04 |
363.64 |
1.90x |
pytorch |
1.9.0+cpu |
resnet18_fx |
69.56% |
69.76% |
-0.28% |
699.79 |
360.62 |
1.94x |
pytorch |
1.9.0+cpu |
resnet18_qat |
69.75% |
69.76% |
-0.02% |
690.97 |
359.46 |
1.92x |
pytorch |
1.9.0+cpu |
resnet18_qat_fx |
69.72% |
69.76% |
-0.05% |
695.52 |
352.69 |
1.97x |
pytorch |
1.9.0+cpu |
resnet50 |
76.00% |
76.13% |
-0.17% |
453.10 |
186.67 |
2.43x |
pytorch |
1.9.0+cpu |
resnet50_ipex |
75.63% |
76.13% |
-0.66% |
495.05 |
298.06 |
1.66x |
pytorch |
1.9.0+cpu |
resnet50_qat |
76.05% |
76.13% |
-0.11% |
454.40 |
190.47 |
2.39x |
pytorch |
1.9.0+cpu |
resnext101_32x8d |
79.02% |
79.31% |
-0.36% |
196.27 |
70.08 |
2.80x |
pytorch |
1.9.0+cpu |
rnnt |
92.48 |
92.55 |
-0.08% |
80.23 |
19.06 |
4.21x |
pytorch |
1.9.0+cpu |
roberta_base_mrpc |
84.70% |
85.51% |
-0.94% |
195.39 |
106.28 |
1.84x |
pytorch |
1.9.0+cpu |
se_resnext50_32x4d |
79.06% |
79.08% |
-0.02% |
351.74 |
159.64 |
2.20x |
pytorch |
1.9.0+cpu |
squeezebert_mrpc |
87.92% |
87.65% |
0.31% |
169.12 |
160.36 |
1.05x |
pytorch |
1.9.0+cpu |
ssd_resnet34_fx |
19.51 |
19.63 |
-0.61% |
28.96 |
7.40 |
3.91x |
pytorch |
1.9.0+cpu |
ssd_resnet34_qat_fx |
17.80% |
17.30% |
2.89% |
274.14 |
98.01 |
2.80x |
pytorch |
1.9.0+cpu |
t5_wmt_en_ro |
24.39 |
24.52 |
-0.55% |
4.45 |
4.12 |
1.08x |
pytorch |
1.9.0+cpu |
transfo_xl_mrpc |
82.09% |
81.20% |
1.09% |
9.55 |
7.17 |
1.33x |
pytorch |
1.9.0+cpu |
xlm_mrpc |
80.50% |
79.56% |
1.18% |
53.46 |
18.17 |
2.94x |
pytorch |
1.9.0+cpu |
xlm_roberta_mrpc |
88.24% |
88.24% |
0.00% |
98.21 |
98.28 |
1.00x |
pytorch |
1.9.0+cpu |
xlm-roberta-base_mrpc |
88.15% |
88.62% |
-0.53% |
98.95 |
99.85 |
0.99x |
pytorch |
1.9.0+cpu |
xlnet_base_mrpc |
89.43% |
89.47% |
-0.04% |
87.80 |
68.69 |
1.28x |
pytorch |
1.9.0+cpu |
yolo_v3 |
24.50% |
24.54% |
-0.17% |
98.11 |
37.50 |
2.62x |
Framework |
version |
model |
Accuracy |
Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec) |
INT8 |
FP32 |
Acc Ratio[(INT8-FP32)/FP32] |
INT8 |
FP32 |
Performance Ratio[INT8/FP32] |
mxnet |
1.7.0 |
inceptionv3 |
77.73% |
77.64% |
0.11% |
974.90 |
274.73 |
3.55x |
mxnet |
1.7.0 |
mobilenet1.0 |
71.69% |
72.22% |
-0.74% |
7235.37 |
2507.08 |
2.89x |
mxnet |
1.7.0 |
mobilenetv2_1.0 |
70.78% |
70.87% |
-0.12% |
5961.96 |
2156.01 |
2.77x |
mxnet |
1.7.0 |
resnet152_v1 |
78.21% |
78.54% |
-0.42% |
563.41 |
149.23 |
3.78x |
mxnet |
1.7.0 |
resnet18_v1 |
70.02% |
70.14% |
-0.17% |
3537.57 |
807.82 |
4.38x |
mxnet |
1.7.0 |
resnet50v1 |
76.08% |
76.33% |
-0.32% |
1587.63 |
415.49 |
3.82x |
mxnet |
1.7.0 |
squeezenet1.0 |
56.74% |
56.96% |
-0.38% |
4911.11 |
1487.43 |
3.30x |
mxnet |
1.7.0 |
ssd-mobilenet1.0 |
74.94% |
75.54% |
-0.79% |
738.51 |
174.83 |
4.22x |
mxnet |
1.7.0 |
ssd-resnet50_v1 |
80.21% |
80.23% |
-0.03% |
268.91 |
54.82 |
4.91x |
Framework |
version |
model |
Accuracy |
Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec) |
INT8 |
FP32 |
Acc Ratio[(INT8-FP32)/FP32] |
INT8 |
FP32 |
Performance Ratio[INT8/FP32] |
onnxrt |
1.8.0 |
alexnet |
54.68% |
54.80% |
-0.22% |
1195.53 |
626.44 |
1.91x |
onnxrt |
1.8.0 |
bert_base_mrpc_dynamic |
84.56% |
86.03% |
-1.71% |
341.47 |
144.42 |
2.36x |
onnxrt |
1.8.0 |
bert_base_mrpc_static |
85.29% |
86.03% |
-0.86% |
683.80 |
294.99 |
2.32x |
onnxrt |
1.8.0 |
bert_squad_model_zoo |
80.43 |
80.67 |
-0.29% |
106.91 |
59.97 |
1.78x |
onnxrt |
1.8.0 |
caffenet |
56.22% |
56.27% |
-0.09% |
1739.77 |
564.82 |
3.08x |
onnxrt |
1.8.0 |
distilbert_base_mrpc |
84.56% |
84.56% |
0.00% |
1626.07 |
554.50 |
2.93x |
onnxrt |
1.8.0 |
googlenet-12 |
67.73% |
67.78% |
-0.07% |
928.78 |
717.07 |
1.30x |
onnxrt |
1.8.0 |
gpt2_lm_head_wikitext_model_zoo |
32.07 |
28.99 |
10.61% |
1.46 |
1.30 |
1.12x |
onnxrt |
1.8.0 |
mobilebert_mrpc |
84.31% |
86.27% |
-2.27% |
766.17 |
649.96 |
1.18x |
onnxrt |
1.8.0 |
mobilebert_squad_mlperf |
89.84 |
90.02 |
-0.20% |
91.06 |
81.05 |
1.12x |
onnxrt |
1.8.0 |
mobilenet_v2 |
65.19% |
66.92% |
-2.59% |
2678.31 |
2807.88 |
0.95x |
onnxrt |
1.8.0 |
mobilenet_v3_mlperf |
75.51% |
75.75% |
-0.32% |
2960.51 |
1881.47 |
1.57x |
onnxrt |
1.8.0 |
resnet_v1_5_mlperf |
76.07% |
76.47% |
-0.52% |
884.23 |
497.15 |
1.78x |
onnxrt |
1.8.0 |
resnet50_v1_5 |
72% |
72% |
0% |
855.49 |
493.39 |
1.73x |
onnxrt |
1.8.0 |
resnet50-v1-12 |
74.83% |
74.97% |
-0.19% |
1008.72 |
520.80 |
1.94x |
onnxrt |
1.8.0 |
roberta_base_mrpc |
88.24% |
89.46% |
-1.36% |
724.68 |
284.01 |
2.55x |
onnxrt |
1.8.0 |
shufflenet-v2-12 |
66.15% |
66.35% |
-0.30% |
4502.48 |
2721.01 |
1.65x |
onnxrt |
1.8.0 |
squeezenet |
56.48% |
56.85% |
-0.65% |
5008.01 |
3629.11 |
1.38x |
onnxrt |
1.8.0 |
ssd_mobilenet_v1 |
22.47% |
23.10% |
-2.73% |
730.17 |
627.50 |
1.16x |
onnxrt |
1.8.0 |
ssd_mobilenet_v2 |
23.90% |
24.68% |
-3.16% |
558.03 |
446.69 |
1.25x |
onnxrt |
1.8.0 |
vgg16 |
66.55% |
66.68% |
-0.19% |
145.10 |
122.70 |
1.18x |
onnxrt |
1.8.0 |
vgg16_model_zoo |
72.32% |
72.38% |
-0.08% |
253.32 |
121.09 |
2.09x |
onnxrt |
1.8.0 |
zfnet |
55.84% |
55.97% |
-0.23% |
536.71 |
336.96 |
1.59x |