Skip to content

Latest commit

 

History

History
1593 lines (1576 loc) · 29 KB

full_model_list.md

File metadata and controls

1593 lines (1576 loc) · 29 KB

Full Validated Models

The below tables are models enabled by the Intel® Neural Compressor.

TensorFlow 2.x models

Framework version model Accuracy Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec)
INT8 FP32 Acc Ratio[(INT8-FP32)/FP32] INT8 FP32 Performance Ratio[INT8/FP32]
tensorflow 2.6.0 densenet121 73.55% 72.89% 0.91% 365.23 303.21 1.20x
tensorflow 2.6.0 densenet161 76.27% 76.29% -0.03% 214.13 166.86 1.28x
tensorflow 2.6.0 densenet169 74.39% 74.65% -0.35% 291.46 245.82 1.19x
tensorflow 2.6.0 efficientnet_b0 77.81% 76.75% 1.38% 578.37 450.25 1.28x
tensorflow 2.6.0 faster_rcnn_inception_resnet_v2 37.65% 38.33% -1.77% 3.49 2.16 1.61x
tensorflow 2.6.0 faster_rcnn_inception_resnet_v2_saved 37.53% 38.33% -2.09% 3.49 2.17 1.61x
tensorflow 2.6.0 faster_rcnn_resnet101 30.28% 30.39% -0.36% 66.41 18.43 3.60x
tensorflow 2.6.0 faster_rcnn_resnet101_saved 30.37% 30.39% -0.07% 66.24 16.45 4.03x
tensorflow 2.6.0 inception_resnet_v2 80.44% 80.40% 0.05% 269.03 137.25 1.96x
tensorflow 2.6.0 inception_v1 70.48% 69.74% 1.06% 2202.64 1058.20 2.08x
tensorflow 2.6.0 inception_v2 74.36% 73.97% 0.53% 1751.31 827.81 2.11x
tensorflow 2.6.0 inception_v3 77.28% 76.75% 0.69% 868.06 384.17 2.26x
tensorflow 2.6.0 inception_v4 80.40% 80.27% 0.16% 569.48 197.28 2.89x
tensorflow 2.6.0 mask_rcnn_inception_v2 28.54% 28.72% -0.63% 134.03 51.12 2.62x
tensorflow 2.6.0 mask_rcnn_inception_v2_ckpt 28.54% 28.72% -0.63% 134.34 51.05 2.63x
tensorflow 2.6.0 mobilenetv1 71.79% 70.96% 1.17% 3831.42 1189.06 3.22x
tensorflow 2.6.0 mobilenetv2 71.79% 71.76% 0.04% 2570.69 1237.62 2.07x
tensorflow 2.6.0 resnet101 77.50% 76.45% 1.37% 849.62 345.54 2.46x
tensorflow 2.6.0 resnet50_fashion 77.80% 78.12% -0.41% 3344.48 1766.78 1.90x
tensorflow 2.6.0 resnet50v1.0 74.11% 74.27% -0.22% 1287.00 495.29 2.60x
tensorflow 2.6.0 resnet50v1.5 76.82% 76.46% 0.47% 1218.03 420.34 2.90x
tensorflow 2.6.0 resnetv2_101 72.67% 71.87% 1.11% 446.03 312.30 1.43x
tensorflow 2.6.0 resnetv2_152 73.03% 72.37% 0.91% 308.83 214.78 1.44x
tensorflow 2.6.0 resnetv2_50 70.33% 69.64% 0.99% 701.26 549.75 1.28x
tensorflow 2.6.0 ssd_mobilenet_v1 22.97% 23.13% -0.69% 842.46 404.04 2.08x
tensorflow 2.6.0 ssd_mobilenet_v1_ckpt 22.99% 23.13% -0.61% 838.22 400.80 2.09x
tensorflow 2.6.0 ssd_resnet34 21.69% 22.09% -1.81% 41.23 10.75 3.83x
tensorflow 2.6.0 ssd_resnet50_v1 37.86% 38.00% -0.37% 65.52 24.01 2.73x
tensorflow 2.6.0 ssd_resnet50_v1_ckpt 37.81% 38.00% -0.50% 66.53 21.21 3.14x
tensorflow 2.6.0 transformer_lt 25.87 25.86 0.07% 15.69 15.72 1.00x
tensorflow 2.6.0 vgg16 72.66% 70.89% 2.50% 642.67 166.64 3.86x
tensorflow 2.6.0 vgg19 72.72% 71.01% 2.41% 519.48 139.24 3.73x
tensorflow 2.6.0 wide_deep_large_ds 77.62% 77.67% -0.07% 8000.00 5263.16 1.52x

TensorFlow 1.x models

Framework version model Accuracy Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec)
INT8 FP32 Acc Ratio[(INT8-FP32)/FP32] INT8 FP32 Performance Ratio[INT8/FP32]
tensorflow 1.15.0-up3 bert_large_squad 92.42 92.98 -0.61% 23.54 11.64 2.02x
tensorflow 1.15.0-up3 bert_base_mrpc 86.52% 86.52% 0.00% 257.93 131.15 1.97x
tensorflow 1.15.0-up3 resnet_v1_50_slim 76.37% 75.18% 1.58% 1449.28 403.71 3.59x
tensorflow 1.15.0-up3 resnet_v1_101_slim 77.49% 76.40% 1.43% 803.86 218.53 3.68x
tensorflow 1.15.0-up3 resnet_v1_152_slim 77.19% 76.81% 0.49% 568.18 144.91 3.92x
tensorflow 1.15.0-up3 inception_v1_slim 70.49% 69.77% 1.03% 1941.75 780.03 2.49x
tensorflow 1.15.0-up3 inception_v2_slim 74.35% 73.98% 0.50% 1557.63 644.33 2.42x
tensorflow 1.15.0-up3 inception_v3_slim 78.31% 77.99% 0.41% 919.12 280.82 3.27x
tensorflow 1.15.0-up3 inception_v4_slim 80.27% 80.19% 0.10% 504.29 140.81 3.58x
tensorflow 1.15.0-up3 vgg16_slim 72.78% 70.89% 2.67% 582.41 142.07 4.10x
tensorflow 1.15.0-up3 vgg19_slim 72.60% 71.01% 2.24% 492.13 118.36 4.16x
tensorflow 1.15.0-up3 resnetv2_50_slim 70.44% 69.72% 1.03% 773.99 469.48 1.65x
tensorflow 1.15.0-up3 resnetv2_101_slim 72.65% 71.91% 1.03% 460.83 249.19 1.85x
tensorflow 1.15.0-up3 resnetv2_152_slim 73.03% 72.40% 0.87% 326.90 168.86 1.94x

PyTorch models

Framework version model Accuracy Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec)
INT8 FP32 Acc Ratio[(INT8-FP32)/FP32] INT8 FP32 Performance Ratio[INT8/FP32]
pytorch 1.9.0+cpu albert_base_mrpc 88.77% 88.50% 0.31% 30.84 26.48 1.16x
pytorch 1.9.0+cpu barthez_mrpc 83.51% 83.81% -0.35% 124.82 75.98 1.64x
pytorch 1.9.0+cpu bert_base_cola 59.06% 58.84% 0.37% 198.53 105.29 1.89x
pytorch 1.9.0+cpu bert_base_mrpc 88.12% 88.73% -0.69% 199.32 107.34 1.86x
pytorch 1.8.0+cpu bert_base_mrpc_qat 90% 89.50% 0.56% 183.22 102.91 1.78x
pytorch 1.9.0+cpu bert_base_rte 70.40% 69.68% 1.04% 192.90 107.25 1.80x
pytorch 1.9.0+cpu bert_base_sst-2 91.74% 91.86% -0.13% 197.86 105.31 1.88x
pytorch 1.9.0+cpu bert_base_sts-b 88.72% 89.27% -0.62% 203.29 107.03 1.90x
pytorch 1.9.0+cpu bert_large_cola 62.07% 62.57% -0.80% 94.97 33.77 2.81x
pytorch 1.9.0+cpu bert_large_mrpc 87.66% 88.33% -0.75% 94.08 33.84 2.78x
pytorch 1.9.0+cpu bert_large_qnli 91.12% 91.82% -0.76% 93.75 33.73 2.78x
pytorch 1.9.0+cpu bert_large_rte 72.20% 72.56% -0.50% 52.80 33.62 1.57x
pytorch 1.9.0+cpu bert_large_squad 92.69 93.05 -0.38% 20.93 11.18 1.87x
pytorch 1.9.0+cpu blendcnn 68.40% 68.40% 0.00% 5154.64 4149.38 1.25x
pytorch 1.9.0+cpu camembert_base_mrpc 84.31% 84.22% 0.11% 191.17 106.92 1.79x
pytorch 1.9.0+cpu ctrl_mrpc 82.00% 82.00% 0.00% 21.32 8.44 2.53x
pytorch 1.9.0+cpu deberta_mrpc 90.04% 90.91% -0.96% 104.59 64.14 1.63x
pytorch 1.9.0+cpu dialogpt_wikitext 36.18 36.18 0.00% 5.78 5.72 1.01x
pytorch 1.9.0+cpu distilbert_base_mrpc 81.17% 80.99% 0.21% 330.25 197.78 1.67x
pytorch 1.9.0+cpu flaubert_mrpc 80.38% 80.19% 0.23% 361.53 306.37 1.18x
pytorch 1.9.0+cpu funnel_mrpc 91.72% 92.26% -0.58% 122.68 121.45 1.01x
pytorch 1.9.0+cpu gpt_wikitext 60.06 60.2 -0.23% 19.51 17.99 1.08x
pytorch 1.9.0+cpu gpt2_mrpc 83.82% 83.49% 0.39% 113.97 114.36 1.00x
pytorch 1.9.0+cpu inception_v3 69.48% 69.54% -0.09% 418.59 207.77 2.01x
pytorch 1.9.0+cpu layoutlm_mrpc 81.22% 78.01% 4.12% 178.86 100.63 1.78x
pytorch 1.9.0+cpu longformer_mrpc 90.88% 91.46% -0.64% 20.72 15.97 1.30x
pytorch 1.9.0+cpu marianmt_wmt_en_ro 22.39 22.23 0.72% 2.95 2.77 1.06x
pytorch 1.9.0+cpu maskrcnn_fx 37.70% 37.80% -0.26% 84.81 51.67 1.64x
pytorch 1.9.0+cpu mbart_wnli 56.34% 56.34% 0.00% 59.14 28.01 2.11x
pytorch 1.9.0+cpu mobilenet_v2 70.59% 71.86% -1.76% 658.76 494.80 1.33x
pytorch 1.9.0+cpu pegasus_billsum 50.23 51.21 -1.91% 0.25 0.17 1.48x
pytorch 1.9.0+cpu peleenet 71.61% 72.08% -0.66% 461.47 359.58 1.28x
pytorch 1.9.0+cpu reformer_crime_and_punishment 6.55 6.5 0.82% 214.78 209.82 1.02x
pytorch 1.9.0+cpu resnet18 69.59% 69.76% -0.24% 692.04 363.64 1.90x
pytorch 1.9.0+cpu resnet18_fx 69.56% 69.76% -0.28% 699.79 360.62 1.94x
pytorch 1.9.0+cpu resnet18_qat 69.75% 69.76% -0.02% 690.97 359.46 1.92x
pytorch 1.9.0+cpu resnet18_qat_fx 69.72% 69.76% -0.05% 695.52 352.69 1.97x
pytorch 1.9.0+cpu resnet50 76.00% 76.13% -0.17% 453.10 186.67 2.43x
pytorch 1.9.0+cpu resnet50_ipex 75.63% 76.13% -0.66% 495.05 298.06 1.66x
pytorch 1.9.0+cpu resnet50_qat 76.05% 76.13% -0.11% 454.40 190.47 2.39x
pytorch 1.9.0+cpu resnext101_32x8d 79.02% 79.31% -0.36% 196.27 70.08 2.80x
pytorch 1.9.0+cpu rnnt 92.48 92.55 -0.08% 80.23 19.06 4.21x
pytorch 1.9.0+cpu roberta_base_mrpc 84.70% 85.51% -0.94% 195.39 106.28 1.84x
pytorch 1.9.0+cpu se_resnext50_32x4d 79.06% 79.08% -0.02% 351.74 159.64 2.20x
pytorch 1.9.0+cpu squeezebert_mrpc 87.92% 87.65% 0.31% 169.12 160.36 1.05x
pytorch 1.9.0+cpu ssd_resnet34_fx 19.51 19.63 -0.61% 28.96 7.40 3.91x
pytorch 1.9.0+cpu ssd_resnet34_qat_fx 17.80% 17.30% 2.89% 274.14 98.01 2.80x
pytorch 1.9.0+cpu t5_wmt_en_ro 24.39 24.52 -0.55% 4.45 4.12 1.08x
pytorch 1.9.0+cpu transfo_xl_mrpc 82.09% 81.20% 1.09% 9.55 7.17 1.33x
pytorch 1.9.0+cpu xlm_mrpc 80.50% 79.56% 1.18% 53.46 18.17 2.94x
pytorch 1.9.0+cpu xlm_roberta_mrpc 88.24% 88.24% 0.00% 98.21 98.28 1.00x
pytorch 1.9.0+cpu xlm-roberta-base_mrpc 88.15% 88.62% -0.53% 98.95 99.85 0.99x
pytorch 1.9.0+cpu xlnet_base_mrpc 89.43% 89.47% -0.04% 87.80 68.69 1.28x
pytorch 1.9.0+cpu yolo_v3 24.50% 24.54% -0.17% 98.11 37.50 2.62x

MXNet models

Framework version model Accuracy Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec)
INT8 FP32 Acc Ratio[(INT8-FP32)/FP32] INT8 FP32 Performance Ratio[INT8/FP32]
mxnet 1.7.0 inceptionv3 77.73% 77.64% 0.11% 974.90 274.73 3.55x
mxnet 1.7.0 mobilenet1.0 71.69% 72.22% -0.74% 7235.37 2507.08 2.89x
mxnet 1.7.0 mobilenetv2_1.0 70.78% 70.87% -0.12% 5961.96 2156.01 2.77x
mxnet 1.7.0 resnet152_v1 78.21% 78.54% -0.42% 563.41 149.23 3.78x
mxnet 1.7.0 resnet18_v1 70.02% 70.14% -0.17% 3537.57 807.82 4.38x
mxnet 1.7.0 resnet50v1 76.08% 76.33% -0.32% 1587.63 415.49 3.82x
mxnet 1.7.0 squeezenet1.0 56.74% 56.96% -0.38% 4911.11 1487.43 3.30x
mxnet 1.7.0 ssd-mobilenet1.0 74.94% 75.54% -0.79% 738.51 174.83 4.22x
mxnet 1.7.0 ssd-resnet50_v1 80.21% 80.23% -0.03% 268.91 54.82 4.91x

ONNX Models

Framework version model Accuracy Performance/ICX8380/1s4c10ins1bs/throughput(samples/sec)
INT8 FP32 Acc Ratio[(INT8-FP32)/FP32] INT8 FP32 Performance Ratio[INT8/FP32]
onnxrt 1.8.0 alexnet 54.68% 54.80% -0.22% 1195.53 626.44 1.91x
onnxrt 1.8.0 bert_base_mrpc_dynamic 84.56% 86.03% -1.71% 341.47 144.42 2.36x
onnxrt 1.8.0 bert_base_mrpc_static 85.29% 86.03% -0.86% 683.80 294.99 2.32x
onnxrt 1.8.0 bert_squad_model_zoo 80.43 80.67 -0.29% 106.91 59.97 1.78x
onnxrt 1.8.0 caffenet 56.22% 56.27% -0.09% 1739.77 564.82 3.08x
onnxrt 1.8.0 distilbert_base_mrpc 84.56% 84.56% 0.00% 1626.07 554.50 2.93x
onnxrt 1.8.0 googlenet-12 67.73% 67.78% -0.07% 928.78 717.07 1.30x
onnxrt 1.8.0 gpt2_lm_head_wikitext_model_zoo 32.07 28.99 10.61% 1.46 1.30 1.12x
onnxrt 1.8.0 mobilebert_mrpc 84.31% 86.27% -2.27% 766.17 649.96 1.18x
onnxrt 1.8.0 mobilebert_squad_mlperf 89.84 90.02 -0.20% 91.06 81.05 1.12x
onnxrt 1.8.0 mobilenet_v2 65.19% 66.92% -2.59% 2678.31 2807.88 0.95x
onnxrt 1.8.0 mobilenet_v3_mlperf 75.51% 75.75% -0.32% 2960.51 1881.47 1.57x
onnxrt 1.8.0 resnet_v1_5_mlperf 76.07% 76.47% -0.52% 884.23 497.15 1.78x
onnxrt 1.8.0 resnet50_v1_5 72% 72% 0% 855.49 493.39 1.73x
onnxrt 1.8.0 resnet50-v1-12 74.83% 74.97% -0.19% 1008.72 520.80 1.94x
onnxrt 1.8.0 roberta_base_mrpc 88.24% 89.46% -1.36% 724.68 284.01 2.55x
onnxrt 1.8.0 shufflenet-v2-12 66.15% 66.35% -0.30% 4502.48 2721.01 1.65x
onnxrt 1.8.0 squeezenet 56.48% 56.85% -0.65% 5008.01 3629.11 1.38x
onnxrt 1.8.0 ssd_mobilenet_v1 22.47% 23.10% -2.73% 730.17 627.50 1.16x
onnxrt 1.8.0 ssd_mobilenet_v2 23.90% 24.68% -3.16% 558.03 446.69 1.25x
onnxrt 1.8.0 vgg16 66.55% 66.68% -0.19% 145.10 122.70 1.18x
onnxrt 1.8.0 vgg16_model_zoo 72.32% 72.38% -0.08% 253.32 121.09 2.09x
onnxrt 1.8.0 zfnet 55.84% 55.97% -0.23% 536.71 336.96 1.59x