forked from jwallen/RMG-database
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evansPolanyi.py
213 lines (174 loc) · 7.4 KB
/
evansPolanyi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# encoding: utf-8
"""
This script will generate an Evans-Polanyi plot for a single kinetics
depository.
"""
import math
import numpy
import pylab
from rmgpy.species import Species
from rmgpy.reaction import Reaction
from rmgpy.kinetics import Arrhenius
################################################################################
def generateThermoData(species, database):
"""
Return the thermodynamics data for a given `species` as generated from
the specified `database`.
"""
thermoData = [database.thermo.getThermoData(molecule) for molecule in species.molecule]
thermoData.sort(key=lambda x: x.getEnthalpy(298))
return thermoData[0]
def getReactionForEntry(entry, database):
"""
Return a Reaction object for a given entry that uses Species instead of
Molecules (so that we can compute the reaction thermo).
"""
reaction = Reaction(reactants=[], products=[])
for molecule in entry.item.reactants:
molecule.makeHydrogensExplicit()
reactant = Species(molecule=[molecule], label=molecule.toSMILES())
reactant.generateResonanceIsomers()
reactant.thermo = generateThermoData(reactant, database)
reaction.reactants.append(reactant)
for molecule in entry.item.products:
molecule.makeHydrogensExplicit()
product = Species(molecule=[molecule], label=molecule.toSMILES())
product.generateResonanceIsomers()
product.thermo = generateThermoData(product, database)
reaction.products.append(product)
reaction.kinetics = entry.data
reaction.degeneracy = entry.item.degeneracy
return reaction
################################################################################
def fitEvansPolanyi(dHrxn, Ea):
"""
Generate best-fit Evans-Polanyi parameters for the given set of enthalpy
of reaction and activation energy data. This can be done using a simple
linear least-squares optimization.
"""
# Fit Evans-Polanyi parameters to the entire dataset
N = len(dHrxn)
A = numpy.zeros((N, 2), numpy.float64)
b = numpy.zeros(N, numpy.float64)
for index in range(N):
A[index,0] = dHrxn[index]
A[index,1] = 1
b[index] = Ea[index]
x, residues, rank, s = numpy.linalg.lstsq(A, b)
# In the above fit, we probably included reactions with very negative or
# very positive dHrxn, for which Ea = 0 and Ea = dHrxn, respectively
# However, the Evans-Polanyi fit predicts very unphysical values of Ea in
# these limits, since it's only linear
# To improve the Evans-Polanyi fit, let's impose the condition 0 <= Ea <= dHrxn
# When we do this, we can improve the fit over the linear region by
# excluding the very negative and very positive dHrxn points from our
# dataset and refitting using only the points in the linear region
# This presumes that we will impose 0 <= Ea <= dHrxn where needed
Hmin = -x[1] / x[0]; Hmax = x[1] / (1 - x[0])
A = []; b = []
for index in range(N):
if Hmin <= dHrxn[index] <= Hmax:
A.append([dHrxn[index], 1])
b.append(Ea[index])
A = numpy.array(A, numpy.float64)
b = numpy.array(b, numpy.float64)
x, residues, rank, s = numpy.linalg.lstsq(A, b)
Hmin = -x[1] / x[0]; Hmax = x[1] / (1 - x[0])
# Compute sample standard deviation and standard error
stdev = 0.0; error = 0.0; count = 0
for H, E in zip(dHrxn, Ea):
if H < Hmin:
stdev += (E - 0)**2
elif H > Hmax:
stdev += (E - H)**2
else:
E0 = x[0] * H + x[1]
if E0 < 0 and H < 0: E0 = 0
elif E0 < H and H > 0: E0 = H
stdev += (E0 - E)**2
count += 1
stdev = math.sqrt(stdev / (count - 1))
dHrxn1 = numpy.arange(min(dHrxn), max(dHrxn), 0.1, numpy.float64)
Ea1 = []
for H in dHrxn1:
E = x[0] * H + x[1]
if E < 0 and H < 0: E = 0
elif E < H and H > 0: E = H
Ea1.append(E)
Ea1 = numpy.array(Ea1, numpy.float64)
dHrxn1 = numpy.array(dHrxn1, numpy.float64)
return x, stdev, dHrxn1, Ea1
################################################################################
def generateEvansPolanyiPlot(depository, database):
"""
Generate an Evans-Polanyi plot for the entries in the given `depository`
of the loaded `database`.
"""
fig = pylab.figure(figsize=(6,5))
Ea = []; dHrxn = []; reactions = []
entries = depository.entries.values()
for entry in entries:
if isinstance(entry.data, Arrhenius):
reaction = getReactionForEntry(entry, database)
reactions.append(reaction)
Ea.append(reaction.kinetics.Ea.value / 1000.)
dHrxn.append(reaction.getEnthalpyOfReaction(298) / 1000.)
xEP, stdevEP, dHrxnEP, EaEP = fitEvansPolanyi(dHrxn, Ea)
alpha, E0 = xEP
print
print 'Summary'
print '======='
print 'Parameters:'
print ' Evans-Polanyi = %s' % (xEP)
print 'Sample standard deviation:'
print ' Evans-Polanyi = %g kJ/mol' % (stdevEP)
print '95% confidence limit:'
print ' Evans-Polanyi = %g kJ/mol' % (1.96 * stdevEP)
pylab.plot(dHrxn, Ea, color='#B0B0B0', linestyle='None', marker='o', picker=5)
pylab.plot(dHrxnEP, EaEP, color='red', linestyle='solid', linewidth=2)
pylab.plot(dHrxnEP, EaEP + 1.96 * stdevEP, color='red', linestyle='dashed', linewidth=1)
pylab.plot(dHrxnEP, EaEP - 1.96 * stdevEP, color='red', linestyle='dashed', linewidth=1)
pylab.xlabel('Enthalpy of reaction at 298 K (kJ/mol)')
pylab.ylabel('Arrhenius activation energy (kJ/mol)')
pylab.xlim(-350,350)
pylab.ylim(-100,350)
pylab.minorticks_on()
fig.subplots_adjust(left=0.14, bottom=0.1, top=0.95, right=0.95, wspace=0.20, hspace=0.20)
def onpick(event):
print 'Pick'
thisline = event.artist
dHrxn = thisline.get_xdata()
Ea = thisline.get_ydata()
for ind in event.ind:
entry = entries[ind]
reaction = reactions[ind]
print '%i. %s' % (entry.index, entry.label)
print reaction
print 'dHrxn = %.2f kJ/mol' % (dHrxn[ind])
print 'Ea = %.2f kJ/mol' % (Ea[ind])
for reactant in reaction.reactants:
print '%24s H298 = %g kcal/mol' % (reactant, reactant.thermo.getEnthalpy(300) / 4184.)
for product in reaction.products:
print '%24s H298 = %g kcal/mol' % (product, product.thermo.getEnthalpy(300) / 4184.)
connection_id = fig.canvas.mpl_connect('pick_event', onpick)
pylab.show()
################################################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('depository', metavar='<depository>', type=str, nargs=1, help='the depository to use')
args = parser.parse_args()
print 'Loading RMG database...'
from rmgpy.data.rmg import RMGDatabase
database = RMGDatabase()
database.load('input')
try:
depositories = [database.kinetics.depository[label] for label in args.depository]
except KeyError:
print e
print 'The specified depository "{0}" was invalid.'.format(label)
quit()
print 'Generating Evans-Polanyi data...'
for depository in depositories:
generateEvansPolanyiPlot(depository, database)