-
Notifications
You must be signed in to change notification settings - Fork 1
/
6_IGL_PARALLEL.py
162 lines (127 loc) · 4.68 KB
/
6_IGL_PARALLEL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
A thermodynamic investigation script for 2D rigid diss collision simulation with multi-core processing enabled.
A PV diagram is drawn to illustrate the Ideal Gas Law.
Independent Variable:
V : Volume
N : Number of balls
T : Temperature
Dependent Variables:
P : Pressure
Xin Kai Lee 12/3/2020
"""
import simulation as sim
import seaborn as sns
import matplotlib.pyplot as plt
import scipy as sp
import numpy as np
import concurrent.futures as ft
import time
def ideal_gas_law(V, N, T):
"""
Calculates the ideal gas equation of state.
Parameters:
V (float): Volume of the container.
N (int): Number of gas particles.
T (float): Temperature.
Returns:
(float): Pressure.
"""
kb = 1.38064852e-23
return V ** -1 * N * kb * T
def run_simulations(parameter):
"""
Runs the 2D Many-Rigid-Disc Collision Simulation.
Parameters:
parameter (list of [N_ball, random_speed_range, r_container, speed]):
N_ball (int): Number of balls in the system.
r_container (float): Radius of the container.
random_speed_range (float): The speed range where the component
velocity of the balls is generated from a uniform distribution
of [-random_speed_range, random_speed_range].
speed (list of numpy.ndarray of float): List of ball velocities.
Returns:
(dict of float): Dictionary containing the average temperature and
pressure of the system.
"""
N_ball = parameter[0]
random_speed_range = parameter[1]
r_container = parameter[2]
speed = parameter[3]
sim_IGL = sim.Simulation(
N_ball=N_ball,
r_container=r_container,
r_ball=r_ball,
m_ball=m_ball,
random_speed_range=random_speed_range,
)
sim_IGL.set_vel_ball(speed)
result = sim_IGL.run(
collisions=collisions, pressure=True, temperature=True, progress=False
)
return result
kb = 1.38064852e-23
# -----------------------------------------------------------------------------#
# The presets provide ideal parameters, but they can be varied
m_ball = 5e-26
r_ball = 0.1
collisions = 500
r_containers = [50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150]
N_balls = [50, 100]
random_speed_ranges = [500, 1000]
# -----------------------------------------------------------------------------#
volumes = [np.pi * r ** 2 for r in r_containers]
speeds = []
parameters = []
pressures = []
temperatures = []
if __name__ == "__main__":
print("Generating Speeds")
# Create isotherms using same starting velocities
for N_ball in N_balls:
for random_speed_range in random_speed_ranges:
speeds.append(sim.generate_random_vel(N_ball, random_speed_range))
index = 0
for N_ball in N_balls:
for random_speed_range in random_speed_ranges:
for r_container in r_containers:
parameters.append(
[N_ball, random_speed_range, r_container, speeds[index]]
)
index += 1
print("Starting Simulations")
t_start = time.perf_counter()
with ft.ProcessPoolExecutor() as executor:
results = executor.map(run_simulations, parameters)
t_end = time.perf_counter()
print(f"Time taken = {round(t_end-t_start,2)}s")
for i, result in enumerate(results):
pressures.append(result["average pressure"])
if i % len(volumes) == 0:
temperatures.append(result["average temperature"])
arr_fit = np.linspace(volumes[0], volumes[-1], 1000)
# Graph Plotting
print("Plotting Graph 1 of 1")
j = 0
plt.figure(num="Ideal Gas Law")
sns.set(context="paper", style="darkgrid", palette="muted")
# Plotting Ideal Gas Law using the input physical parameters
for N_ball in N_balls:
for random_speed_range in random_speed_ranges:
legend = f"N = {N_ball}, T = %s K" % (float("%.3g" % temperatures[j]))
plt.plot(
arr_fit, ideal_gas_law(arr_fit, N_ball, temperatures[j]), label=legend
)
j += 1
# Data points from simulation
for i, _ in enumerate(temperatures):
pressures_temp = []
for j, _ in enumerate(volumes):
pressures_temp.append(pressures[i * len(volumes) + j])
plt.plot(volumes, pressures_temp, "o", mec="white", mew=0.5)
plt.title("Ideal Gas Law")
plt.xlabel(r"Volume /$m^2$")
plt.ylabel(r"Pressure /Pa")
plt.legend()
plt.tight_layout()
plt.show()
print("End of Script")