forked from xjywhu/SmartGuard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathother_baseline.py
255 lines (205 loc) · 9.43 KB
/
other_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from sklearn.ensemble import IsolationForest
from sklearn import svm
from sklearn.neighbors import LocalOutlierFactor
from sklearn.mixture import GaussianMixture
from sklearn.naive_bayes import GaussianNB
import numpy as np
import pickle
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, confusion_matrix
import argparse
vocab_dic = {"an": 141, "fr": 222, "sp": 234}
class MarkovChain():
def __init__(self, state_number):
self.transition_matrix = None
self.states = None
self.state_number = state_number
def fit(self, sequences):
# self.states = set(x for sequence in sequences for x in sequence)
self.states = set(x for x in range(self.state_number))
state_index = {state: i for i, state in enumerate(self.states)}
n_states = len(self.states)
# transition_matrix = np.zeros((n_states, n_states))
transition_matrix = np.ones((n_states, n_states)) * 1e-10
for sequence in sequences:
for i in range(len(sequence) - 1):
state_from, state_to = sequence[i], sequence[i + 1]
transition_matrix[state_index[state_from]][state_index[state_to]] += 1
transition_matrix /= transition_matrix.sum(axis=1, keepdims=True)
self.transition_matrix = transition_matrix
def predict_sequence_probability(self, sequence):
state_index = {state: i for i, state in enumerate(self.states)}
probability = 1.0
for i in range(len(sequence) - 1):
probability *= self.transition_matrix[state_index[sequence[i]]][state_index[sequence[i + 1]]]
return probability
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
# Model parameters
parser.add_argument('--model', default='OCSVM', type=str, metavar='MODEL',
help='Name of model to train: GMM/NB/LocalOutlierFactor/IsolationForest/MC/OCSVM')
parser.add_argument('--dataset', default='fr', type=str, metavar='MODEL',
help='Name of dataset to train: an/fr/us/sp')
parser.add_argument('--attack', default='SD', type=str, metavar='type',
help='Name of dataset to train: SD/MD/DM/DD')
return parser
def make_data():
with open(train_file1, 'rb') as file1:
X_trn_r1 = pickle.load(file1)
if args.attack == 'SD':
with open(f"data/{args.dataset}_data/attack/{args.dataset}_light_attack.pkl", 'rb') as file3:
X_e1 = pickle.load(file3)
with open(f"data/{args.dataset}_data/attack/{args.dataset}_camera_attack.pkl", 'rb') as file3:
X_e2 = pickle.load(file3)
with open(f"data/{args.dataset}_data/attack/{args.dataset}_television_attack.pkl", 'rb') as file3:
X_e3 = pickle.load(file3)
X_test_e = X_e1 + X_e2 + X_e3
# X_test_e = X_e1 + X_e2
# X_test_e = X_e1
elif args.attack == 'MD':
with open(f"data/{args.dataset}_data/attack/{args.dataset}_smartlock_attack1.pkl", 'rb') as file3:
X_e1 = pickle.load(file3)
with open(f"data/{args.dataset}_data/attack/{args.dataset}_smartlock_attack2.pkl", 'rb') as file3:
X_e2 = pickle.load(file3)
X_test_e = X_e1 + X_e2
elif args.attack == 'DM':
if args.dataset != "an":
with open(f"data/{args.dataset}_data/attack/{args.dataset}_airconditioner_attack.pkl", 'rb') as file3:
X_e1 = pickle.load(file3)
with open(f"data/{args.dataset}_data/attack/{args.dataset}_blind_attack.pkl", 'rb') as file3:
X_e2 = pickle.load(file3)
if args.dataset == "fr":
X_test_e = X_e1 + X_e2
elif args.dataset == "an":
X_test_e = X_e2
else:
with open(f"data/{args.dataset}_data/attack/{args.dataset}_watervalve_attack.pkl", 'rb') as file3:
X_e3 = pickle.load(file3)
X_test_e = X_e1 + X_e2 + X_e3
else:
if args.dataset == "an":
with open(f"data/{args.dataset}_data/attack/{args.dataset}_bathheater_attack.pkl", 'rb') as file3:
X_e1 = pickle.load(file3)
else:
with open(f"data/{args.dataset}_data/attack/{args.dataset}_microwave_attack.pkl", 'rb') as file3:
X_e1 = pickle.load(file3)
X_test_e = X_e1
with open(test_file2, 'rb') as file2:
X_test_r = pickle.load(file2)
return X_trn_r1, X_test_r, X_test_e
def count_cm(labels, y_pred_test):
cm = confusion_matrix(y_true=labels, y_pred=y_pred_test)
TN, FP, FN, TP = cm.ravel()
FPR = FP / (FP + TN)
FNR = FN / (FN + TP)
recall = recall_score(y_pred=y_pred_test, y_true=labels)
precision = precision_score(y_pred=y_pred_test, y_true=labels)
accuracy = accuracy_score(y_pred=y_pred_test, y_true=labels)
f1 = f1_score(y_pred=y_pred_test, y_true=labels)
res = {"dataset": args.dataset, "type": args.attack, "TP": int(TP), "TN": int(TN), "FP": int(FP), "FN": int(FN),
"FPR": FPR, "FNR": FNR, "recall": recall,
"precision": precision, "accuracy": accuracy, "f1_score": f1}
return res
def train(args):
labels = []
y_pred_test = []
if args.model == "GMM":
X_train, X_test_r, X_test_e = make_data()
# X_train = X_trn_r + X_trn_e
X_test = X_test_r + X_test_e
labels = [0] * len(X_test_r) + [1] * len(X_test_e)
model = GaussianMixture(n_components=2, random_state=2023)
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
y_pred_test = model.fit_predict(X_test)
elif args.model == "NB":
X_train, X_test_r, X_test_e = make_data()
# X_train = X_trn_r + X_trn_e
X_test = X_test_r + X_test_e
labels = [0] * len(X_test_r) + [1] * len(X_test_e)
model = GaussianNB()
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
model.fit(X_test, labels)
# y_pred_test = model.predict(X_test)
y_pred_test = model.predict(X_test)
# print(y_pred_test)
elif args.model == "LocalOutlierFactor":
X_train, X_test_r, X_test_e = make_data()
X_test = X_test_r + X_test_e
labels = [0] * len(X_test_r) + [1] * len(X_test_e)
# sp:(n_neighbors=2)
model = LocalOutlierFactor(n_neighbors=10, contamination='auto')
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
y_pred_test = model.fit_predict(X_test)
y_pred_test = np.array(y_pred_test)
y_pred_test[np.where(y_pred_test == 1)] = 0
y_pred_test[np.where(y_pred_test == -1)] = 1
elif args.model == "IsolationForest":
X_train, X_test_r, X_test_e = make_data()
X_test = X_test_r + X_test_e
labels = [0] * len(X_test_r) + [1] * len(X_test_e)
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
model = IsolationForest(contamination='auto', random_state=2023)
y_pred_test = model.fit_predict(X_test)
y_pred_test = np.array(y_pred_test)
y_pred_test[np.where(y_pred_test == 1)] = 0
y_pred_test[np.where(y_pred_test == -1)] = 1
elif args.model == "MC":
X_train, X_test_r, X_test_e = make_data()
labels = [1] * len(X_test_r) + [-1] * len(X_test_e)
X_train = np.array(X_train)
X_train = X_train[:, 3:40:4]
X_test = X_test_r + X_test_e
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
model = MarkovChain(state_number=vocab_dic[args.dataset])
model.fit(X_train)
threshold = 0.2
y_pred_test = []
for sequence in X_test:
probability = model.predict_sequence_probability(sequence)
# print(probability)
if probability < threshold:
y_pred_test.append(1)
else:
y_pred_test.append(-1)
elif args.model == "OCSVM":
X_train, X_test_r, X_test_e = make_data()
X_test = X_test_r + X_test_e
labels = [0] * len(X_test_r) + [1] * len(X_test_e)
X_test = np.array(X_test)
X_test = X_test[:, 3:40:4]
# gamma=0.5
model = svm.OneClassSVM(nu=0.5, kernel="rbf", gamma=0.5)
y_pred_test = model.fit_predict(X_test)
y_pred_test[np.where(y_pred_test == 1)] = 0
y_pred_test[np.where(y_pred_test == -1)] = 1
return count_cm(labels, y_pred_test)
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
attacks_dic = {
"SD": ["light_attack", "camera_attack", "television_attack"],
"MD": ["smartlock_attack1", "smartlock_attack2"],
"DM": ["airconditioner_attack", "blind_attack", "watervalve_attack"],
"DD": ["microwave_attack"]
}
models = ["GMM", "NB", "LocalOutlierFactor", "IsolationForest", "MC", "OCSVM"]
datasets = ["an", "fr", "sp", "us"]
results = []
for model in models:
args.model = model
for dataset in datasets:
args.dataset = dataset
train_file1 = f"data/{args.dataset}_data/{args.dataset}_trn_instance_10.pkl"
train_file2 = f"data/{args.dataset}_data/{args.dataset}_add_trn.pkl"
vld_file = f"data/{args.dataset}_data/{args.dataset}_vld_instance_10.pkl"
test_file2 = f"data/{args.dataset}_data/{args.dataset}_test_instance_10.pkl"
for attack_type in ["SD", "MD", "DM", "DD"]:
args.attack = attack_type
res = train(args)
tmp = {model: res}
results.append(tmp)
print(tmp)