-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathRcppExports.R
199 lines (149 loc) · 5.37 KB
/
RcppExports.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
C_Choose <- function(x, y) {
.Call(`_distr6_C_Choose`, x, y)
}
C_ArcsinePdf <- function(x, min, max, logp) {
.Call(`_distr6_C_ArcsinePdf`, x, min, max, logp)
}
C_ArcsineCdf <- function(x, min, max, lower, logp) {
.Call(`_distr6_C_ArcsineCdf`, x, min, max, lower, logp)
}
C_ArcsineQuantile <- function(x, min, max, lower, logp) {
.Call(`_distr6_C_ArcsineQuantile`, x, min, max, lower, logp)
}
C_DegeneratePdf <- function(x, mean, logp) {
.Call(`_distr6_C_DegeneratePdf`, x, mean, logp)
}
C_DegenerateCdf <- function(x, mean, lower, logp) {
.Call(`_distr6_C_DegenerateCdf`, x, mean, lower, logp)
}
C_DegenerateQuantile <- function(x, mean, lower, logp) {
.Call(`_distr6_C_DegenerateQuantile`, x, mean, lower, logp)
}
C_EmpiricalMVPdf <- function(x, data) {
.Call(`_distr6_C_EmpiricalMVPdf`, x, data)
}
C_EmpiricalMVCdf <- function(x, data) {
.Call(`_distr6_C_EmpiricalMVCdf`, x, data)
}
C_ShiftedLoglogisticPdf <- function(x, location, shape, scale, logp) {
.Call(`_distr6_C_ShiftedLoglogisticPdf`, x, location, shape, scale, logp)
}
C_ShiftedLoglogisticCdf <- function(x, location, shape, scale, lower, logp) {
.Call(`_distr6_C_ShiftedLoglogisticCdf`, x, location, shape, scale, lower, logp)
}
C_ShiftedLoglogisticQuantile <- function(x, location, shape, scale, lower, logp) {
.Call(`_distr6_C_ShiftedLoglogisticQuantile`, x, location, shape, scale, lower, logp)
}
C_Vec_WeightedDiscretePdf <- function(x, data, pdf) {
.Call(`_distr6_C_Vec_WeightedDiscretePdf`, x, data, pdf)
}
C_WeightedDiscreteCdf <- function(x, data, cdf, lower, logp) {
.Call(`_distr6_C_WeightedDiscreteCdf`, x, data, cdf, lower, logp)
}
C_Vec_WeightedDiscreteCdf <- function(x, data, cdf, lower, logp) {
.Call(`_distr6_C_Vec_WeightedDiscreteCdf`, x, data, cdf, lower, logp)
}
C_WeightedDiscreteQuantile <- function(x, data, cdf, lower, logp) {
.Call(`_distr6_C_WeightedDiscreteQuantile`, x, data, cdf, lower, logp)
}
C_Vec_WeightedDiscreteQuantile <- function(x, data, cdf, lower, logp) {
.Call(`_distr6_C_Vec_WeightedDiscreteQuantile`, x, data, cdf, lower, logp)
}
C_NumericCdf_Discrete <- function(q, x, pdf, lower, logp) {
.Call(`_distr6_C_NumericCdf_Discrete`, q, x, pdf, lower, logp)
}
C_NumericQuantile <- function(p, x, cdf, lower, logp) {
.Call(`_distr6_C_NumericQuantile`, p, x, cdf, lower, logp)
}
C_CosineKernelPdf <- function(x, logp) {
.Call(`_distr6_C_CosineKernelPdf`, x, logp)
}
C_CosineKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_CosineKernelCdf`, x, lower, logp)
}
C_CosineKernelQuantile <- function(x, lower, logp) {
.Call(`_distr6_C_CosineKernelQuantile`, x, lower, logp)
}
C_EpanechnikovKernelPdf <- function(x, logp) {
.Call(`_distr6_C_EpanechnikovKernelPdf`, x, logp)
}
C_EpanechnikovKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_EpanechnikovKernelCdf`, x, lower, logp)
}
C_LogisticKernelPdf <- function(x, logp) {
.Call(`_distr6_C_LogisticKernelPdf`, x, logp)
}
C_LogisticKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_LogisticKernelCdf`, x, lower, logp)
}
C_LogisticKernelQuantile <- function(x, lower, logp) {
.Call(`_distr6_C_LogisticKernelQuantile`, x, lower, logp)
}
C_NormalKernelPdf <- function(x, logp) {
.Call(`_distr6_C_NormalKernelPdf`, x, logp)
}
C_QuarticKernelPdf <- function(x, logp) {
.Call(`_distr6_C_QuarticKernelPdf`, x, logp)
}
C_QuarticKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_QuarticKernelCdf`, x, lower, logp)
}
C_SigmoidKernelPdf <- function(x, logp) {
.Call(`_distr6_C_SigmoidKernelPdf`, x, logp)
}
C_SilvermanKernelPdf <- function(x, logp) {
.Call(`_distr6_C_SilvermanKernelPdf`, x, logp)
}
C_SilvermanKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_SilvermanKernelCdf`, x, lower, logp)
}
C_TriangularKernelPdf <- function(x, logp) {
.Call(`_distr6_C_TriangularKernelPdf`, x, logp)
}
C_TriangularKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_TriangularKernelCdf`, x, lower, logp)
}
C_TriangularKernelQuantile <- function(x, lower, logp) {
.Call(`_distr6_C_TriangularKernelQuantile`, x, lower, logp)
}
C_TricubeKernelPdf <- function(x, logp) {
.Call(`_distr6_C_TricubeKernelPdf`, x, logp)
}
C_TricubeKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_TricubeKernelCdf`, x, lower, logp)
}
C_TriweightKernelPdf <- function(x, logp) {
.Call(`_distr6_C_TriweightKernelPdf`, x, logp)
}
C_TriweightKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_TriweightKernelCdf`, x, lower, logp)
}
C_UniformKernelPdf <- function(x, logp) {
.Call(`_distr6_C_UniformKernelPdf`, x, logp)
}
C_UniformKernelCdf <- function(x, lower, logp) {
.Call(`_distr6_C_UniformKernelCdf`, x, lower, logp)
}
C_UniformKernelQuantile <- function(x, lower, logp) {
.Call(`_distr6_C_UniformKernelQuantile`, x, lower, logp)
}
C_vec_PdfCdf <- function(x) {
.Call(`_distr6_C_vec_PdfCdf`, x)
}
C_vec_CdfPdf <- function(x) {
.Call(`_distr6_C_vec_CdfPdf`, x)
}
C_mat_PdfCdf <- function(x) {
.Call(`_distr6_C_mat_PdfCdf`, x)
}
C_mat_CdfPdf <- function(x) {
.Call(`_distr6_C_mat_CdfPdf`, x)
}
C_dpq <- function(fun, x, args, lower = TRUE, log = FALSE) {
.Call(`_distr6_C_dpq`, fun, x, args, lower, log)
}
C_r <- function(fun, x, args) {
.Call(`_distr6_C_r`, fun, x, args)
}