-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathSDistribution_Geometric.R
273 lines (249 loc) · 9 KB
/
SDistribution_Geometric.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# nolint start
#' @name Geometric
#' @template SDist
#' @templateVar ClassName Geometric
#' @templateVar DistName Geometric
#' @templateVar uses to model the number of trials (or number of failures) before the first success
#' @templateVar params probability of success, \eqn{p},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = (1 - p)^{k-1}p}
#' @templateVar paramsupport probability \eqn{p}
#' @templateVar distsupport the Naturals (zero is included if modelling number of failures before success)
#' @templateVar default prob = 0.5, trials = FALSE
#' @details
#' The Geometric distribution is used to either model the number of trials
#' (`trials = TRUE`) or number of failures (`trials = FALSE`) before the first success.
# nolint end
#'
#' @template class_distribution
#' @template field_alias
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template param_prob
#' @template param_qprob
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
Geometric <- R6Class("Geometric",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Geometric",
short_name = "Geom",
description = "Geometric Probability Distribution.",
alias = "GM, Geo",
packages = "stats",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param trials `(logical(1))` \cr
#' If `TRUE` then the distribution models the number of trials, \eqn{x}, before the first
#' success. Otherwise the distribution calculates the probability of \eqn{y} failures before the
#' first success. Mathematically these are related by \eqn{Y = X - 1}.
initialize = function(prob = NULL, qprob = NULL, trials = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = Set$new(), # temp see below
type = Naturals$new()
)
if (!self$getParameterValue("trials")) {
private$.properties$support <- Naturals$new()
self$description <- "Geometric (Failures) Probability Distribution."
} else {
private$.properties$support <- PosNaturals$new()
self$description <- "Geometric (Trials) Probability Distribution."
}
invisible(self)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
if (self$getParameterValue("trials")[[1]]) {
return(1 / unlist(self$getParameterValue("prob")))
} else {
return((1 - unlist(self$getParameterValue("prob"))) /
unlist(self$getParameterValue("prob")))
}
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
if (self$getParameterValue("trials")[[1]]) {
return(numeric(length(self$getParameterValue("prob"))) + 1)
} else {
return(numeric(length(self$getParameterValue("prob"))))
}
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
prob <- unlist(self$getParameterValue("prob"))
return((1 - prob) / (prob^2))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
prob <- unlist(self$getParameterValue("prob"))
return((2 - prob) / sqrt(1 - prob))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
prob <- unlist(self$getParameterValue("prob"))
exkurtosis <- 6 + (prob^2 / (1 - prob))
if (excess) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
#' @description
#' The entropy of a (discrete) distribution is defined by
#' \deqn{- \sum (f_X)log(f_X)}
#' where \eqn{f_X} is the pdf of distribution X, with an integration analogue for
#' continuous distributions.
#' @param ... Unused.
entropy = function(base = 2, ...) {
prob <- unlist(self$getParameterValue("prob"))
return(((-(1 - prob) * log(1 - prob, base)) - (prob * log(prob, base))) / prob) # nolint
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (self$getParameterValue("trials")[[1]]) {
if (t < -log(1 - self$getParameterValue("prob"))) {
return((self$getParameterValue("prob") * exp(t)) /
(1 - (1 - self$getParameterValue("prob")) * exp(t)))
} else {
return(NaN)
}
} else {
return((self$getParameterValue("prob")) /
(1 - (1 - self$getParameterValue("prob")) * exp(t)))
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
if (self$getParameterValue("trials")[[1]]) {
return((self$getParameterValue("prob") * exp(1i * t)) /
(1 - (1 - self$getParameterValue("prob")) * exp(1i * t)))
} else {
return((self$getParameterValue("prob")) /
(1 - (1 - self$getParameterValue("prob")) * exp(1i * t)))
}
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
if (self$getParameterValue("trials")[[1]]) {
return((self$getParameterValue("prob") * z) / (1 - z * self$getParameterValue("qprob")))
} else {
return(self$getParameterValue("prob") / (1 - z * self$getParameterValue("qprob")))
}
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (self$getParameterValue("trials")[[1]]) {
x <- x + 1
}
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "dgeom",
x = x,
args = list(prob = unlist(prob)),
log = log,
vec = test_list(prob)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (self$getParameterValue("trials")[[1]]) {
x <- x + 1
}
prob <- self$getParameterValue("prob")
call_C_base_pdqr(
fun = "pgeom",
x = x,
args = list(prob = unlist(prob)),
lower.tail = lower.tail,
log = log.p,
vec = test_list(prob)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
prob <- self$getParameterValue("prob")
geom <- call_C_base_pdqr(
fun = "qgeom",
x = p,
args = list(prob = unlist(prob)),
lower.tail = lower.tail,
log = log.p,
vec = test_list(prob)
)
if (self$getParameterValue("trials")[[1]]) {
geom <- geom + 1
}
return(geom)
},
.rand = function(n) {
prob <- self$getParameterValue("prob")
geom <- call_C_base_pdqr(
fun = "rgeom",
x = n,
args = list(prob = unlist(prob)),
vec = test_list(prob)
)
if (self$getParameterValue("trials")[[1]]) {
geom <- geom + 1
}
return(geom)
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate"),
.trials = logical(0)
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Geom", ClassName = "Geometric",
Type = "\u21150", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "stats", Tags = "", Alias = "GM, Geo"
)
)