-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathSDistribution_Logarithmic.R
227 lines (207 loc) · 7.8 KB
/
SDistribution_Logarithmic.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# nolint start
#' @name Logarithmic
#' @template SDist
#' @templateVar ClassName Logarithmic
#' @templateVar DistName Logarithmic
#' @templateVar uses to model consumer purchase habits in economics and is derived from the Maclaurin series expansion of \eqn{-ln(1-p)}
#' @templateVar params a parameter, \eqn{\theta},
#' @templateVar pdfpmf pmf
#' @templateVar pdfpmfeq \deqn{f(x) = -\theta^x/xlog(1-\theta)}
#' @templateVar paramsupport \eqn{0 < \theta < 1}
#' @templateVar distsupport \eqn{{1,2,3,\ldots}}
#' @templateVar default theta = 0.5
# nolint end
#' @template class_distribution
#' @template field_alias
#' @template method_mode
#' @template method_entropy
#' @template method_kurtosis
#' @template method_pgf
#' @template method_mgfcf
#' @template param_decorators
#' @template field_packages
#'
#' @family discrete distributions
#' @family univariate distributions
#'
#' @export
Logarithmic <- R6Class("Logarithmic",
inherit = SDistribution, lock_objects = F,
public = list(
# Public fields
name = "Logarithmic",
short_name = "Log",
description = "Logarithmic Probability Distribution.",
alias = "L",
packages = "extraDistr",
# Public methods
# initialize
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#' @param theta `(numeric(1))`\cr
#' Theta parameter defined as a probability between `0` and `1`.
initialize = function(theta = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosNaturals$new(),
type = PosNaturals$new()
)
},
# stats
#' @description
#' The arithmetic mean of a (discrete) probability distribution X is the expectation
#' \deqn{E_X(X) = \sum p_X(x)*x}
#' with an integration analogue for continuous distributions.
#' @param ... Unused.
mean = function(...) {
theta <- unlist(self$getParameterValue("theta"))
return(-theta / (log(1 - theta) * (1 - theta)))
},
#' @description
#' The mode of a probability distribution is the point at which the pdf is
#' a local maximum, a distribution can be unimodal (one maximum) or multimodal (several
#' maxima).
mode = function(which = "all") {
rep(1, length(self$getParameterValue("theta")))
},
#' @description
#' The variance of a distribution is defined by the formula
#' \deqn{var_X = E[X^2] - E[X]^2}
#' where \eqn{E_X} is the expectation of distribution X. If the distribution is multivariate the
#' covariance matrix is returned.
#' @param ... Unused.
variance = function(...) {
theta <- unlist(self$getParameterValue("theta"))
return((-theta^2 - theta * log(1 - theta)) / ((1 - theta)^2 * (log(1 - theta))^2))
},
#' @description
#' The skewness of a distribution is defined by the third standardised moment,
#' \deqn{sk_X = E_X[\frac{x - \mu}{\sigma}^3]}{sk_X = E_X[((x - \mu)/\sigma)^3]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' @param ... Unused.
skewness = function(...) {
theta <- unlist(self$getParameterValue("theta"))
s1 <- (theta * (3 * theta + theta * log(1 - theta) + log(1 - theta))) /
((theta - 1)^3 * log(1 - theta)^2)
s2 <- 2 * (-theta / (log(1 - theta) * (1 - theta)))^3
return((s1 + s2) / (self$stdev()^3))
},
#' @description
#' The kurtosis of a distribution is defined by the fourth standardised moment,
#' \deqn{k_X = E_X[\frac{x - \mu}{\sigma}^4]}{k_X = E_X[((x - \mu)/\sigma)^4]}
#' where \eqn{E_X} is the expectation of distribution X, \eqn{\mu} is the mean of the
#' distribution and \eqn{\sigma} is the standard deviation of the distribution.
#' Excess Kurtosis is Kurtosis - 3.
#' @param ... Unused.
kurtosis = function(excess = TRUE, ...) {
theta <- unlist(self$getParameterValue("theta"))
s1 <- (3 * theta^4) / ((1 - theta)^4 * log(1 - theta)^4)
s2 <- (6 * theta^3) / ((theta - 1)^4 * log(1 - theta)^3)
s3 <- (4 * theta^3) / ((theta - 1)^4 * log(1 - theta)^2)
s4 <- (theta^3) / ((theta - 1)^4 * log(1 - theta))
s5 <- (4 * theta^2) / ((theta - 1)^4 * log(1 - theta)^2)
s6 <- (4 * theta^2) / ((theta - 1)^4 * log(1 - theta))
s7 <- (theta) / ((theta - 1)^4 * log(1 - theta))
sum <- -s1 - s2 - s3 - s4 - s5 - s6 - s7
kurtosis <- sum / (self$stdev()^4)
if (excess) {
return(kurtosis - 3)
} else {
return(kurtosis)
}
},
#' @description The moment generating function is defined by
#' \deqn{mgf_X(t) = E_X[exp(xt)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
mgf = function(t, ...) {
if (t < -log(self$getParameterValue("theta"))) {
return(log(1 - self$getParameterValue("theta") * exp(t)) /
log(1 - self$getParameterValue("theta")))
} else {
return(NaN)
}
},
#' @description The characteristic function is defined by
#' \deqn{cf_X(t) = E_X[exp(xti)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
cf = function(t, ...) {
return(log(1 - self$getParameterValue("theta") * exp(t * 1i)) /
log(1 - self$getParameterValue("theta")))
},
#' @description The probability generating function is defined by
#' \deqn{pgf_X(z) = E_X[exp(z^x)]}
#' where X is the distribution and \eqn{E_X} is the expectation of the distribution X.
#' @param ... Unused.
pgf = function(z, ...) {
if (abs(z) < 1 / self$getParameterValue("theta")) {
return(log(1 - self$getParameterValue("theta") * z) /
log(1 - self$getParameterValue("theta")))
} else {
return(NaN)
}
}
),
private = list(
# dpqr
.pdf = function(x, log = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::dlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(x = x, log = log)
)
} else {
extraDistr::dlgser(x, theta = self$getParameterValue("theta"), log = log)
}
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::plgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(q = x, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::plgser(x,
theta = self$getParameterValue("theta"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::qlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(p = p, lower.tail = lower.tail, log.p = log.p)
)
} else {
extraDistr::qlgser(p,
theta = self$getParameterValue("theta"),
lower.tail = lower.tail, log.p = log.p
)
}
},
.rand = function(n) {
if (checkmate::testList(self$getParameterValue("theta"))) {
mapply(extraDistr::rlgser,
theta = self$getParameterValue("theta"),
MoreArgs = list(n = n)
)
} else {
extraDistr::rlgser(n, theta = self$getParameterValue("theta"))
}
},
# traits
.traits = list(valueSupport = "discrete", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "Log", ClassName = "Logarithmic",
Type = "\u21150", ValueSupport = "discrete",
VariateForm = "univariate",
Package = "extraDistr", Tags = "", Alias = "L"
)
)