We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ubuntu 22.04 python 3.11.10
xinference[vllm] 0.16.2
GRADIO_DEFAULT_CONCURRENCY_LIMIT=10 xinference-local --host 0.0.0.0 --port 10860
我直接用vllm框架在两张v100 16g上启动一个7b的模型,是没有问题的,而且可以正常对话。 当我用xinference[vllm]在两张v100 16g上启动一个7b的模型,它报错了,以下是我的参数设置和报错信息:
我现在在用ragflow框架,推理服务接的xinference, 这对我很重要,希望官方能重视这个bug.
The text was updated successfully, but these errors were encountered:
不需要设置tensor_parallel_size,去掉试试。
Sorry, something went wrong.
不需要设置tensor_parallel_size,去掉试试。 我去掉了tensor_parallel_size参数设置,它报另外一个错误,以上是报错信息。希望你们能修复这个bug,感谢!
This issue is stale because it has been open for 7 days with no activity.
same issue
same issue I have updated the version of xinference to 1.0.0, and it worked.
No branches or pull requests
System Info / 系統信息
ubuntu 22.04
python 3.11.10
Running Xinference with Docker? / 是否使用 Docker 运行 Xinfernece?
Version info / 版本信息
xinference[vllm] 0.16.2
The command used to start Xinference / 用以启动 xinference 的命令
GRADIO_DEFAULT_CONCURRENCY_LIMIT=10 xinference-local --host 0.0.0.0 --port 10860
Reproduction / 复现过程
我直接用vllm框架在两张v100 16g上启动一个7b的模型,是没有问题的,而且可以正常对话。
当我用xinference[vllm]在两张v100 16g上启动一个7b的模型,它报错了,以下是我的参数设置和报错信息:
Expected behavior / 期待表现
我现在在用ragflow框架,推理服务接的xinference, 这对我很重要,希望官方能重视这个bug.
The text was updated successfully, but these errors were encountered: