Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

用deepseek-coder-instruct聊天模板注册的DeepSeek-Coder-V2-Lite-Instruct模型给出的代码在聊天界面会出现&quot,代表“,但是如果用post得到的代码就不会 #2861

Open
1 of 3 tasks
MOON1234567890A opened this issue Feb 14, 2025 · 1 comment
Labels
Milestone

Comments

@MOON1234567890A
Copy link

System Info / 系統信息

cuda版本:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Thu_Nov_18_09:45:30_PST_2021
Cuda compilation tools, release 11.5, V11.5.119
Build cuda_11.5.r11.5/compiler.30672275_0

transformers版本:
Name: transformers
Version: 4.45.2
Summary: State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow
Home-page: https://github.com/huggingface/transformers
Author: The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)
Author-email: [email protected]
License: Apache 2.0 License
Location: /anaconda3/envs/xinf/lib/python3.10/site-packages
Requires: filelock, huggingface-hub, numpy, packaging, pyyaml, regex, requests, safetensors, tokenizers, tqdm
Required-by: auto_gptq, autoawq, chattts, compressed-tensors, FlagEmbedding, nemo_text_processing, optimum, peft, sentence-transformers, transformers-stream-generator, vllm

python版本:
3.10.15
操作系统:
linux

Running Xinference with Docker? / 是否使用 Docker 运行 Xinfernece?

  • docker / docker
  • pip install / 通过 pip install 安装
  • installation from source / 从源码安装

Version info / 版本信息

1.2.1

The command used to start Xinference / 用以启动 xinference 的命令

xinference-local --host 0.0.0.0 --port 9997

Reproduction / 复现过程

Image

Expected behavior / 期待表现

Image

@XprobeBot XprobeBot added the gpu label Feb 14, 2025
@XprobeBot XprobeBot added this to the v1.x milestone Feb 14, 2025
@qinxuye
Copy link
Contributor

qinxuye commented Feb 14, 2025

之前 deepseek-r1-distill 模型会输出 <think> 标签,在 gradio 里会被吞掉,因此做了 html.escape。

# some model like deepseek-r1-distill-qwen
# will generate <think>...</think> ...
# in gradio, no output will be rendered,
# thus escape html tags in advance
response_content += html.escape(delta["content"])

这个需要看下怎么解。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

3 participants