-
Notifications
You must be signed in to change notification settings - Fork 394
/
Copy pathinference.py
62 lines (50 loc) · 1.98 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import json
import numpy as np
import os
import time
import glob
from model import efficientdet
from utils import preprocess_image, postprocess_boxes
from utils.draw_boxes import draw_boxes
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
phi = 1
weighted_bifpn = True
model_path = 'efficientdet-d1.h5'
image_sizes = (512, 640, 768, 896, 1024, 1280, 1408)
image_size = image_sizes[phi]
# coco classes
classes = {value['id'] - 1: value['name'] for value in json.load(open('coco_90.json', 'r')).values()}
num_classes = 90
score_threshold = 0.3
colors = [np.random.randint(0, 256, 3).tolist() for _ in range(num_classes)]
_, model = efficientdet(phi=phi,
weighted_bifpn=weighted_bifpn,
num_classes=num_classes,
score_threshold=score_threshold)
model.load_weights(model_path, by_name=True)
for image_path in glob.glob('datasets/VOC2007/JPEGImages/*.jpg'):
image = cv2.imread(image_path)
src_image = image.copy()
# BGR -> RGB
image = image[:, :, ::-1]
h, w = image.shape[:2]
image, scale = preprocess_image(image, image_size=image_size)
# run network
start = time.time()
boxes, scores, labels = model.predict_on_batch([np.expand_dims(image, axis=0)])
boxes, scores, labels = np.squeeze(boxes), np.squeeze(scores), np.squeeze(labels)
print(time.time() - start)
boxes = postprocess_boxes(boxes=boxes, scale=scale, height=h, width=w)
# select indices which have a score above the threshold
indices = np.where(scores[:] > score_threshold)[0]
# select those detections
boxes = boxes[indices]
labels = labels[indices]
draw_boxes(src_image, boxes, scores, labels, colors, classes)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', src_image)
cv2.waitKey(0)
if __name__ == '__main__':
main()