-
Notifications
You must be signed in to change notification settings - Fork 20
/
evaluation_diligent.py
63 lines (48 loc) · 2.4 KB
/
evaluation_diligent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from bilateral_normal_integration_numpy import bilateral_normal_integration
from scipy.io import loadmat
import numpy as np
import cv2
import os
obj_list = ["bear", "buddha", "cat", "cow", "goblet", "harvest", "pot1", "pot2", "reading"]
data_dir = "data/Fig7_diligent"
k = 2
made_all = dict()
for obj_name in obj_list:
print(f"\nProcessing {obj_name} ...")
normal_path = os.path.join(data_dir, obj_name, "normal_map.png")
mask_path = os.path.join(data_dir, obj_name, "mask.png")
K_path = os.path.join(data_dir, obj_name, "K.txt")
depth_gt_path = os.path.join("diligent_depth_GT", f"{obj_name}_gt.mat")
normal_map = cv2.cvtColor(cv2.imread(normal_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_RGB2BGR)
if normal_map.dtype is np.dtype(np.uint16):
normal_map = normal_map/65535 * 2 - 1
else:
normal_map = normal_map/255 * 2 - 1
try:
mask = cv2.imread(os.path.join(mask_path), cv2.IMREAD_GRAYSCALE).astype(bool)
except:
mask = np.ones(normal_map.shape[:2], bool)
K =np.loadtxt(K_path)
depth_map_est, surface, *_ = bilateral_normal_integration(normal_map=normal_map,
normal_mask=mask,
k=k,
K=K,
max_iter=100,
tol=1e-4)
depth_gt = loadmat(depth_gt_path)["depth_gt"]
scale = np.nanmedian(depth_gt / depth_map_est)
scaled_depth = depth_map_est * scale
absolute_difference_map = np.abs(scaled_depth - depth_gt)
made = np.nanmean(absolute_difference_map)
made_all[obj_name] = made
print(obj_name, f"MADE: {made:.3f}")
# save absolute difference map using jet colormap
absolute_difference_map = absolute_difference_map / 5 # error > 5 mm is clipped to 5 mm
absolute_difference_map = np.clip(absolute_difference_map, 0, 1)
absolute_difference_map = (absolute_difference_map * 255).astype(np.uint8)
absolute_difference_map = cv2.applyColorMap(absolute_difference_map, cv2.COLORMAP_JET)
absolute_difference_map[~mask] = 255
cv2.imwrite(os.path.join(data_dir, obj_name, "absolute_difference_map.png"), absolute_difference_map)
print(f"Saved {os.path.join(data_dir, obj_name, 'absolute_difference_map.png')}")
from pprint import pprint
pprint(made_all)