forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlovasz_softmax.py
149 lines (128 loc) · 4.77 KB
/
lovasz_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
##
# version 1: use torch.autograd
class LovaszSoftmax(nn.Module):
'''
This is the autograd version
'''
def __init__(self, reduction='mean', ignore_index=-100):
super(LovaszSoftmax, self).__init__()
self.reduction = reduction
self.lb_ignore = ignore_index
def forward(self, logits, label):
'''
args: logits: tensor of shape (N, C, H, W)
args: label: tensor of shape(N, H, W)
'''
# overcome ignored label
n, c, h, w = logits.size()
logits = logits.transpose(0, 1).reshape(c, -1).float() # use fp32 to avoid nan
label = label.view(-1)
idx = label.ne(self.lb_ignore).nonzero(as_tuple=False).squeeze()
probs = logits.softmax(dim=0)[:, idx]
label = label[idx]
lb_one_hot = torch.zeros_like(probs).scatter_(
0, label.unsqueeze(0), 1).detach()
errs = (lb_one_hot - probs).abs()
errs_sort, errs_order = torch.sort(errs, dim=1, descending=True)
n_samples = errs.size(1)
# lovasz extension grad
with torch.no_grad():
# lb_one_hot_sort = lb_one_hot[
# torch.arange(c).unsqueeze(1).repeat(1, n_samples), errs_order
# ].detach()
lb_one_hot_sort = torch.cat([
lb_one_hot[i, ord].unsqueeze(0)
for i, ord in enumerate(errs_order)], dim=0)
n_pos = lb_one_hot_sort.sum(dim=1, keepdim=True)
inter = n_pos - lb_one_hot_sort.cumsum(dim=1)
union = n_pos + (1. - lb_one_hot_sort).cumsum(dim=1)
jacc = 1. - inter / union
if n_samples > 1:
jacc[:, 1:] = jacc[:, 1:] - jacc[:, :-1]
losses = torch.einsum('ab,ab->a', errs_sort, jacc)
if self.reduction == 'sum':
losses = losses.sum()
elif self.reduction == 'mean':
losses = losses.mean()
return losses
if __name__ == '__main__':
import torchvision
import torch
import numpy as np
import random
torch.manual_seed(15)
random.seed(15)
np.random.seed(15)
torch.backends.cudnn.deterministic = True
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
net = torchvision.models.resnet18(pretrained=False)
self.conv1 = net.conv1
self.bn1 = net.bn1
self.maxpool = net.maxpool
self.relu = net.relu
self.layer1 = net.layer1
self.layer2 = net.layer2
self.layer3 = net.layer3
self.layer4 = net.layer4
self.fc = nn.Conv2d(512, 19, 3, 1, 1)
def forward(self, x):
feat = self.conv1(x)
feat = self.bn1(feat)
feat = self.relu(feat)
feat = self.maxpool(feat)
feat = self.layer1(feat)
feat = self.layer2(feat)
feat = self.layer3(feat)
feat = self.layer4(feat)
feat = self.fc(feat)
out = F.interpolate(feat, x.size()[2:], mode='bilinear', align_corners=True)
return out
net1 = Model()
net2 = Model()
net2.load_state_dict(net1.state_dict())
red = 'mean'
criteria1 = LabelSmoothSoftmaxCEV2(lb_smooth=0.1, ignore_index=255, reduction=red)
criteria2 = LabelSmoothSoftmaxCEV1(lb_smooth=0.1, ignore_index=255, reduction=red)
net1.cuda()
net2.cuda()
net1.train()
net2.train()
criteria1.cuda()
criteria2.cuda()
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-2)
optim2 = torch.optim.SGD(net2.parameters(), lr=1e-2)
bs = 64
for it in range(300):
inten = torch.randn(bs, 3, 224, 224).cuda()
lbs = torch.randint(0, 19, (bs, 224, 224)).cuda()
lbs[1, 1, 1] = 255
lbs[30, 3, 2:200] = 255
lbs[18, 4:7, 8:200] = 255
logits = net1(inten)
loss1 = criteria1(logits, lbs)
optim1.zero_grad()
loss1.backward()
optim1.step()
# print(net1.fc.weight[:, :5])
logits = net2(inten)
loss2 = criteria2(logits, lbs)
optim2.zero_grad()
loss2.backward()
optim2.step()
# net1.load_state_dict(net2.state_dict())
# print(net2.fc.weight[:, :5])
with torch.no_grad():
if (it+1) % 50 == 0:
print('iter: {}, ================='.format(it+1))
# print(net1.fc.weight.numel())
print('fc weight: ', torch.mean(torch.abs(net1.fc.weight - net2.fc.weight)).item())
print('conv1 weight: ', torch.mean(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
print('loss: ', loss1.item() - loss2.item())