forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpc_softmax.py
182 lines (143 loc) · 5.77 KB
/
pc_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
'''
Proposed in this paper: https://arxiv.org/abs/1911.10688
'''
def pc_softmax_func(logits, lb_proportion):
assert logits.size(1) == len(lb_proportion)
shape = [1, -1] + [1 for _ in range(len(logits.size()) - 2)]
W = torch.tensor(lb_proportion).view(*shape).to(logits.device).detach()
logits = logits - logits.max(dim=1, keepdim=True)[0]
exp = torch.exp(logits)
pc_softmax = exp.div_((W * exp).sum(dim=1, keepdim=True))
return pc_softmax
class PCSoftmax(nn.Module):
def __init__(self, lb_proportion):
super(PCSoftmax, self).__init__()
self.weight = lb_proportion
def forward(self, logits):
return pc_softmax_func(logits, self.weight)
class PCSoftmaxCrossEntropyV1(nn.Module):
def __init__(self, lb_proportion, ignore_index=255, reduction='mean'):
super(PCSoftmaxCrossEntropyV1, self).__init__()
self.weight = torch.tensor(lb_proportion).cuda().detach()
self.nll = nn.NLLLoss(reduction=reduction, ignore_index=ignore_index)
def forward(self, logits, label):
shape = [1, -1] + [1 for _ in range(len(logits.size()) - 2)]
W = self.weight.view(*shape).to(logits.device).detach()
logits = logits - logits.max(dim=1, keepdim=True)[0]
wexp_sum = torch.exp(logits).mul(W).sum(dim=1, keepdim=True)
log_wsoftmax = logits - torch.log(wexp_sum)
loss = self.nll(log_wsoftmax, label)
return loss
class PCSoftmaxCrossEntropyFunction(torch.autograd.Function):
@staticmethod
@amp.custom_fwd
def forward(ctx, logits, label, lb_proportion, reduction, ignore_index):
# prepare label
label = label.clone().detach()
ignore = label == ignore_index
n_valid = (ignore == 0).sum()
label[ignore] = 0
lb_one_hot = torch.zeros_like(logits).scatter_(
1, label.unsqueeze(1), 1).detach()
shape = [1, -1] + [1 for _ in range(len(logits.size()) - 2)]
W = torch.tensor(lb_proportion).view(*shape).to(logits.device).detach()
logits = logits - logits.max(dim=1, keepdim=True)[0]
exp_wsum = torch.exp(logits).mul_(W).sum(dim=1, keepdim=True)
ignore = ignore.nonzero()
_, M = ignore.size()
a, *b = ignore.chunk(M, dim=1)
mask = [a, torch.arange(lb_one_hot.size(1)), *b]
lb_one_hot[mask] = 0
ctx.mask = mask
ctx.W = W
ctx.lb_one_hot = lb_one_hot
ctx.logits = logits
ctx.exp_wsum = exp_wsum
ctx.reduction = reduction
ctx.n_valid = n_valid
log_wsoftmax = logits - torch.log(exp_wsum)
loss = -log_wsoftmax.mul_(lb_one_hot).sum(dim=1)
if reduction == 'mean':
loss = loss.sum().div_(n_valid)
if reduction == 'sum':
loss = loss.sum()
return loss
@staticmethod
@amp.custom_bwd
def backward(ctx, grad_output):
mask = ctx.mask
W = ctx.W
lb_one_hot = ctx.lb_one_hot
logits = ctx.logits
exp_wsum = ctx.exp_wsum
reduction = ctx.reduction
n_valid = ctx.n_valid
wlabel = torch.sum(W * lb_one_hot, dim=1, keepdim=True)
wscores = torch.exp(logits).div_(exp_wsum).mul_(wlabel)
wscores[mask] = 0
grad = wscores.sub_(lb_one_hot)
if reduction == 'none':
grad.mul_(grad_output.unsqueeze(1))
elif reduction == 'sum':
grad.mul_(grad_output)
elif reduction == 'mean':
grad.div_(n_valid).mul_(grad_output)
return grad, None, None, None, None, None
class PCSoftmaxCrossEntropyV2(nn.Module):
def __init__(self, lb_proportion, reduction='mean', ignore_index=-100):
super(PCSoftmaxCrossEntropyV2, self).__init__()
self.lb_proportion = lb_proportion
self.reduction = reduction
self.ignore_index = ignore_index
def forward(self, logits, label):
return PCSoftmaxCrossEntropyFunction.apply(
logits, label, self.lb_proportion, self.reduction, self.ignore_index)
if __name__ == "__main__":
torch.backends.cudnn.deterministic = True
import torchvision
net1 = torchvision.models.resnet18()
net1.fc = nn.Linear(512, 19)
net1.cuda()
net2 = torchvision.models.resnet18()
net2.fc = nn.Linear(512, 19)
net2.cuda()
net2.load_state_dict(net1.state_dict())
lb_proportion = [1. for _ in range(19)]
crit1 = nn.CrossEntropyLoss()
# crit2 = nn.CrossEntropyLoss()
crit1 = PCSoftmaxCrossEntropyV1(lb_proportion)
crit2 = PCSoftmaxCrossEntropyV2(lb_proportion)
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-3)
optim2 = torch.optim.SGD(net2.parameters(), lr=1e-3)
for i in range(1000):
inten = torch.randn(8, 3, 224, 224).cuda()
lb = torch.randint(0, 19, (8,)).cuda()
logits1 = net1(inten)
logits2 = net2(inten)
# logits = torch.randn(8, 19, 224, 224).cuda()
# lb = torch.randint(0, 19, (8, 224, 224)).cuda()
# logits = torch.tensor(logits, requires_grad=True)
loss1 = crit1(logits1, lb)
loss2 = crit2(logits2, lb)
optim1.zero_grad()
optim2.zero_grad()
loss1.backward()
loss2.backward()
optim1.step()
optim2.step()
# print(loss1.item())
if i % 100 == 0:
# print(loss2.item() - loss1.item())
print((net1.conv1.weight - net2.conv1.weight).abs().max().item())
# print((net1.fc.weight - net2.fc.weight).abs().max().item())
# lb_proportion = [1. for _ in range(3)]
# diff = torch.softmax(inten, dim=1) - pc_softmax_func(inten, lb_proportion)
# print(torch.max(diff))
# print(torch.min(diff))
# loss1.backward()