forked from stoyan-yordanov/LSCI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lsci_tLASCA.m
324 lines (252 loc) · 16.4 KB
/
lsci_tLASCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
function lsci_tLASCA(InputFile, StartFrame, EndFrame, NumericalMethod, PixelXYZ, ZWindowSizePx, CamExposureTime, WavelengthUm, NA, Magnification)
% Read video, calc Temporal Laser Speckle Contrast and save it as multi page tiff file.
% InputFile = file name of the input data (if empty brings command line file dialog) - supports avi (video) | mj2 (video Motion Jpeg 2000) | tiff (multipage)
% Process between StartFrame and EndFrame frames.
% NumericalMethod = 'SumsVec-CDF' | 'SumsVec-Continious' | 'SumsVec-Discrete'
% PixelXYZ = [X, Y, Z] (coordinate of the point where we show statistics (K and V)
% ZWindowSizePx = 25, 50, 100 etc num frames (pixel size of the Z (temporal) sliding window to calc LSC per pixel along temproal (Z) direction)
% CamExposureTime = 250e-6 [sec] etc (cam exposure time in sec.)
% WavelengthUm = wavelength of the illumination light in [um]
% NA = numerical aperture
% Magnification = magnification of the optical system
% Single XY pixel location to calc/show/save K and V
pixY = PixelXYZ(1);
pixX = PixelXYZ(2);
pixZ = PixelXYZ(3);
% Case no file provided or the string is not a valid file --> Get dir file list and choose a file t process
if strcmp(InputFile, '') || ~isfile(InputFile)
fileDirFilter = '*';
fileList = lsci_sysGetDirectoryFileList(fileDirFilter); % return the list of file in the current dir
fileList = lsci_sysChooseFilesFromFileList(fileList); % get the file(s) to be processed
InputFile = fileList{1, 1}; % only one file (the first one) will be processed
end
startTime = tic;
% Check file name
[filePath, fileName, fileExtension] = fileparts(InputFile);
% Read input raw frames
inXYZFrames = lsci_ReaderFramesToMatrix(InputFile, StartFrame, EndFrame, 'double'); % XY images array (Z = frame index)
% The structure that will store the results of the processing
dataLSP = struct();
dataLSP.Contrast = []; % LSP Contrast --> represents K
dataLSP.CorrelationTime = []; % Correlation Time --> represents tc
dataLSP.Velocity = []; % Velocity --> represents V
% Write frames to multipage tiff file
fprintf('\nStart calculating Temporal Laser Speckle Contrast... \n'); % show progress
% Process input and calc Laser Speckle Contrast and Velocity map
dataLSP.Contrast = lsciProcessLASCAInputByMethod(inXYZFrames, NumericalMethod, ZWindowSizePx);
% Process Laser Speckle Contrast and calc Tc map in [s]
dataLSP.CorrelationTime = calcCorrelationTimeMap(dataLSP.Contrast, CamExposureTime);
% Process Laser Speckle Tc and calc Velocity map in [um/s]
dataLSP.Velocity = calcVelocityMap(dataLSP.CorrelationTime, WavelengthUm, NA, Magnification);
% Set base file names
baseFileNameLSPContrast = fullfile(filePath, [fileName '_tLSC-k']); % Assemble tiff file name for Laser Speckle Contrast
baseFileNameLSPCorrelationTime = fullfile(filePath, [fileName '_tLSC-tc']); % Assemble tiff file name for Laser Speckle Correlation Time
baseFileNameLSPVelocity = fullfile(filePath, [fileName '_tLSC-v']); % Assemble tiff file name for Laser Speckle Velocity
% Save result for Laser Speckle Contrast as tiff
type3DStackItNormalization = 'global';
outputFileType = 'tiff';
lsci_SaveToFrames(dataLSP.Contrast, baseFileNameLSPContrast, outputFileType, type3DStackItNormalization);
lsci_SaveToFrames(dataLSP.CorrelationTime, baseFileNameLSPCorrelationTime, outputFileType, type3DStackItNormalization);
lsci_SaveToFrames(dataLSP.Velocity, baseFileNameLSPVelocity, outputFileType, type3DStackItNormalization);
% Save processed data
saveLspData(dataLSP, InputFile, '_tLSC', PixelXYZ, ZWindowSizePx, CamExposureTime, NumericalMethod, WavelengthUm, NA, Magnification);
% Show elapsed time and progress
elapsedTime = toc(startTime);
fprintf('\n\nEnd of processing --> Start Frame = %d, End Frame = %d\n', StartFrame, EndFrame); % show progress
fprintf('Statistics --> Kmax = %f, Kmin = %f, Kmean = %f\n', max(dataLSP.Contrast, [], 'all'), min(dataLSP.Contrast, [], 'all'), mean(dataLSP.Contrast, 'all')); % show progress
fprintf('Statistics --> Tcmax = %.3g [s], Tcmin = %.3g [s], Tcmean = %.3g [s]\n', max(dataLSP.CorrelationTime, [], 'all'), min(dataLSP.CorrelationTime, [], 'all'), mean(dataLSP.CorrelationTime, 'all')); % show progress
fprintf('Statistics --> Vmax = %.3f [mm/s], Vmin = %.3f [mm/s], Vmean = %.3f [mm/s]\n', max(dataLSP.Velocity, [], 'all')/1000, min(dataLSP.Velocity, [], 'all')/1000, mean(dataLSP.Velocity, 'all')/1000); % show progress
fprintf('Statistics Pixel[%d, %d, %d] --> K = %f, Tc = %g [s], V = %.3f [mm/s]\n', pixY, pixX, pixZ, dataLSP.Contrast(pixX, pixY, pixZ), dataLSP.CorrelationTime(pixX, pixY, pixZ), dataLSP.Velocity(pixX, pixY, pixZ)/1000); % show progress
fprintf('Processing time = %f [sec]\n\n', elapsedTime);
end
function rtrnXYZLSPContrast = lsciProcessLASCAInputByMethod(InXYZFrames, NumericalMethod, ZWindowSizePx)
% Calc Temporal Laser Speckle Contrast Map
% Numerical algorithms take ideas from the following papers:
% W. James Tom et al, "Efficient Processing of Laser Speckle Contrast Images", DOI link: https://doi.org/10.1109/TMI.2008.925081
% Calc Laser Speckle Contrast map
switch(NumericalMethod)
case 'SumsVec-CDF' % Variant 1 --> iZ steps (Cumulative CDF Contrast)
rtrnXYZLSPContrast = tLASCASumsVectorized1(InXYZFrames, ZWindowSizePx);
case 'SumsVec-Continious' % Variant 2 --> ZWindowSizeFrames continious steps (continious window sweeping)
rtrnXYZLSPContrast = tLASCASumsVectorized2(InXYZFrames, ZWindowSizePx);
case 'SumsVec-Discrete' % Variant 3 --> ZWindowSizeFrames discrete steps
rtrnXYZLSPContrast = tLASCASumsVectorized3(InXYZFrames, ZWindowSizePx);
otherwise
fprintf('\n\nUnsupported numerical method --> %s\n', NumericalMethod);
error('Exit due to error!');
end
% Filter Contrast by removing/replacing all K > 1 and K = NaN
rtrnXYZLSPContrast(rtrnXYZLSPContrast > 1) = 1;
rtrnXYZLSPContrast(isnan(rtrnXYZLSPContrast)) = 1;
end
function rtrnXYZLSPContrast = tLASCASumsVectorized1(InXYZFrames, ZWindowSizePx)
% Sums method (vectorized along Z) to calc the Laser Speckle Contrast
[lengthX, lengthY, lengthZ] = size(InXYZFrames);
% Pre-allocate
rtrnXYZLSPContrast = zeros(lengthX, lengthY, lengthZ); % variant 1
cdfIntensity = zeros(lengthX, lengthY);
cdfSqrIntensity = zeros(lengthX, lengthY);
% Calc Laser Speckle Contrast map --> k = std(I)/<I> = sqrt(<I^2> - <I>^2)/<I> = sqrt(<I^2>/<I>^2 - 1)
fprintf('\nProgress LSP Contrast CDF (Sums Vectorized Calc): 000.0 [%%] | 00000.0 [sec]');
for iZ = 1:lengthZ % loop throughout frames --> variant 1
startTime = tic;
% Variant 1 --> iZ steps
cdfIntensity = cdfIntensity + InXYZFrames(:, :, iZ); % cumulative intensity
cdfSqrIntensity = cdfSqrIntensity + InXYZFrames(:, :, iZ).^2; % cumulative of the squared intensity
meanIntensity = cdfIntensity./iZ; % mean intensity along Z
meanSqrIntensity = cdfSqrIntensity ./iZ; % mean of squared intensities along Z
rtrnXYZLSPContrast(1:end, 1:end, iZ) = sqrt(meanSqrIntensity - meanIntensity .^2)./meanIntensity; % calc contrast for the given pixel
elapsedTime = toc(startTime);
fprintf('\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b '); % delete previous progress line
fprintf('%05.1f [%%] | %07.1f [sec]', (iZ/lengthZ)*100, (lengthZ - iZ)*elapsedTime);
end
end
function rtrnXYZLSPContrast = tLASCASumsVectorized2(InXYZFrames, ZWindowSizePx)
% Sums method (vectorized along Z) to calc the Laser Speckle Contrast
[lengthX, lengthY, lengthZ] = size(InXYZFrames);
% Pre-allocate
rtrnXYZLSPContrast = zeros(lengthX, lengthY, (lengthZ - ZWindowSizePx + 1)); % variant 2
% Calc Laser Speckle Contrast map --> k = std(I)/<I> = sqrt(<I^2> - <I>^2)/<I> = sqrt(<I^2>/<I>^2 - 1)
fprintf('\nProgress LSP Contrast Continious (Sums Vectorized Calc): 000.0 [%%] | 00000.0 [sec]');
for iZ = 1:(lengthZ - ZWindowSizePx + 1) % loop throughout frames --> variant 2
startTime = tic;
% Variant 2 --> ZWindowSizeFrames continious steps
subFrames = InXYZFrames(:, :, iZ:(iZ + ZWindowSizePx - 1)); % extract subframes XxYxZ given by the window size
meanIntensity = sum(subFrames, 3)./ZWindowSizePx; % mean intensity along Z
meanSqrIntensity = sum(subFrames .^2, 3)./ZWindowSizePx; % mean of squared intensities along Z
%meanSqrIntensity = sum(subFrames .^2, 3)./(ZWindowSizeFrames - 1); % mean of squared intensities along Z
rtrnXYZLSPContrast(1:end, 1:end, iZ) = sqrt(meanSqrIntensity - meanIntensity .^2)./meanIntensity; % calc contrast for the given pixel
elapsedTime = toc(startTime);
fprintf('\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b '); % delete previous progress line
fprintf('%05.1f [%%] | %07.1f [sec]', (iZ/(lengthZ - ZWindowSizePx + 1))*100, ((lengthZ - ZWindowSizePx + 1) - iZ)*elapsedTime);
end
end
function rtrnXYZLSPContrast = tLASCASumsVectorized3(InXYZFrames, ZWindowSizePx)
% Sums method (vectorized along Z) to calc the Laser Speckle Contrast
[lengthX, lengthY, lengthZ] = size(InXYZFrames);
% Pre-allocate
numZSteps = floor(lengthZ/ZWindowSizePx);
rtrnXYZLSPContrast = zeros(lengthX, lengthY, numZSteps); % variant 3
% Calc Laser Speckle Contrast map --> k = std(I)/<I> = sqrt(<I^2> - <I>^2)/<I> = sqrt(<I^2>/<I>^2 - 1)
fprintf('\nProgress LSP Contrast (Sums Vectorized Calc): 000.0 [%%] | 00000.0 [sec]');
i = 0;
for iZ = 1:ZWindowSizePx:(lengthZ - ZWindowSizePx + 1) % loop throughout frames --> variant 3
startTime = tic;
i = i + 1;
% Variant 3 --> ZWindowSizeFrames discrete steps
subFrames = InXYZFrames(:, :, iZ:(iZ + ZWindowSizePx - 1)); % extract subframes XxYxZ given by the window size
meanIntensity = sum(subFrames, 3)./ZWindowSizePx; % mean intensity along Z
meanSqrIntensity = sum(subFrames .^2, 3)./ZWindowSizePx; % mean of squared intensities along Z
rtrnXYZLSPContrast(1:end, 1:end, i) = sqrt(meanSqrIntensity - meanIntensity .^2)./meanIntensity; % calc contrast for the given pixel
elapsedTime = toc(startTime);
fprintf('\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b '); % delete previous progress line
fprintf('%05.1f [%%] | %07.1f [sec]', (i/numZSteps)*100, (numZSteps - i)*elapsedTime);
end
end
function rtrnXYZLSPTc = calcCorrelationTimeMap(LSPContrast, CamExposureTime)
% Calc 3D XYZ Correlation Time Map from Laser Speckle
% Numerical algorithms take ideas from the following papers:
% Julio C. Ramirez-San-Juan et al, "Impact of velocity distribution assumption on simplified laser speckle imaging equation ", DOI link: https://doi.org/10.1364/OE.16.003197
% The algorithm is good approximation for Contrast K in the range, K = [0, 0.6] (T > 2*tc)
fprintf('\nProgress Correlation Time Tc (Calc): ');
startTime = tic;
% Calc correlation time map from contrast map --> we approximate by assuming validity of:
% tc = TK^2 (T = cam exosure time, tc = (de-)correlation time, K = contrast), valid for T > 2*tc
% Then velocity V is --> we use the formula Ct(Tau) = exp(-(Vs*Tau)^2/len0^2) = exp(- Tau^2/Tc^2) => tc = len0/Vs => Vs = len0/Tc
rtrnXYZLSPTc = CamExposureTime .* (LSPContrast .^2); % calc decorrelation time matrix
% Filter velocity with Inf values
% tcthreshold = 5*median(rtrnXYZLSPTc, 'all');
% rtrnXYZLSPTc(isnan(rtrnXYZLSPTc)) = 0;
% rtrnXYZLSPTc(rtrnXYZLSPTc == Inf) = 0;
% rtrnXYZLSPTc(rtrnXYZLSPTc > tcthreshold) = tcthreshold;
% Show progress
elapsedTime = toc(startTime);
fprintf('100%% | %.3f [sec]\n', elapsedTime);
end
function rtrnXYZLSPVelocity = calcVelocityMap(LSPCorrelationTime, WavelengthUm, NA, Magnification)
% Calc 3D XYZ Velocity Map from Laser Speckle
% Numerical algorithms take ideas from the following papers:
% Julio C. Ramirez-San-Juan et al, "Impact of velocity distribution assumption on simplified laser speckle imaging equation ", DOI link: https://doi.org/10.1364/OE.16.003197
% The algorithm is good approximation for Contrast K in the range, K = [0, 0.6] (T > 2*tc)
fprintf('Progress Velocity (Calc): ');
startTime = tic;
% Calc velocity map from contrast map --> we approximate by assuming validity of:
% tc = TK^2 (T = cam exosure time, tc = (de-)correlation time, K = contrast), valid for T > 2*tc
% Then velocity V is --> we use the formula Ct(Tau) = exp(-(Vs*Tau)^2/len0^2) = exp(- Tau^2/Tc^2) => tc = len0/Vs => Vs = len0/Tc
rtrnXYZLSPVelocity = calcTheoryTcToVelocity(LSPCorrelationTime, WavelengthUm, NA, Magnification); % calc velocity map XYZ in [um/s]
% Filter velocity with Inf and/or NaN values
rtrnXYZLSPVelocity(isnan(rtrnXYZLSPVelocity)) = 0;
rtrnXYZLSPVelocity(rtrnXYZLSPVelocity == Inf) = 0;
% Remove velocity outliers
vthreshold = 5*median(rtrnXYZLSPVelocity, 'all'); % calc oultlier's upper boundary using the median
rtrnXYZLSPVelocity(rtrnXYZLSPVelocity > vthreshold) = vthreshold;
% [lengthX, lengthY, lengthZ] = size(rtrnXYZLSPVelocity);
% for iZ = 1:lengthZ
% subFrame = rtrnXYZLSPVelocity(:, :, iZ); % get current frame
% vthreshold = 4*median(subFrame, 'all'); % calc oultlier's upper boundary using the median
% subFrame(subFrame > vthreshold) = vthreshold;
% rtrnXYZLSPVelocity(1:end, 1:end, iZ) = subFrame;
% end
% Show progress
elapsedTime = toc(startTime);
fprintf('100%% | %.3f [sec]\n', elapsedTime);
end
function rtrnVs = calcTheoryTcToVelocity(Tc, Wavelength, NA, Magnification)
% Calculate single velocity from Tc (correlation time) and len0 (correlation length)
% Tc = correlation/decorrelation time (where Ct(tau) = 1/e)
% Wavelength = wavelength of the illumination
% NA = numerical aperture of the optical system
% Note: the Vs (velocity) units will depend on Tc unit and Wavelength unit, e.g. if Tc in [s] and Wavelegnth in [um] => Vs in [um/s]
% Calc decorrelation length
len0 = 0.41*Wavelength*Magnification/NA;
% Calc velocity Vs --> we use the formula Ct(Tau) = exp(-(Vs*Tau)^2/len0^2) = exp(- Tau^2/Tc^2) => tc = len0/Vs => Vs = len0/Tc
rtrnVs = len0./Tc;
end
function saveLspData(DataLSP, InputFile, LASCAMethodString, PixelXYZ, ZWindowSizePx, CamExposureTime, NumericalMethod, WavelengthUm, NA, Magnification)
% Save the processed LSP data
fprintf('\nStart saving LSP Data parameters... \n'); % show progress
% Single XY pixel location to calc/show/save curves
pixY = PixelXYZ(1);
pixX = PixelXYZ(2);
pixZ = PixelXYZ(3);
% Options
outputFileType = 'dat';
% Get file name without extension
[inputFilePath, inputFileName, inputFileExtension] = fileparts(InputFile);
% Save common parameters
BaseFileName = [inputFileName LASCAMethodString];
txtFileName = [BaseFileName '.dat'];
fileId = fopen(txtFileName, 'w'); % open the file for writing
% Check if openning file was successful
if (fileId == -1)
error(['Writing to file failed! --> Filepath = ' txtFileName]); % inform user about the error
end
% Save parameters --> key = value [unit]
fprintf(fileId, 'ZWindowSizePx = %d [px]\n', ZWindowSizePx);
fprintf(fileId, 'CamExposureTime = %g [s]\n', CamExposureTime);
fprintf(fileId, 'NumericalMethod = %s [-]\n', NumericalMethod);
fprintf(fileId, 'WavelengthUm = %f [um]\n', WavelengthUm);
fprintf(fileId, 'NA = %f [-]\n', NA);
fprintf(fileId, 'Magnification = %f [-]\n', Magnification);
fprintf(fileId, '\n');
% Save LSP Contrast
if ~isempty(DataLSP.Contrast)
fprintf(fileId, 'Statistics --> Kmax = %f, Kmin = %f, Kmean = %f\n', max(DataLSP.Contrast, [], 'all'), min(DataLSP.Contrast, [], 'all'), mean(DataLSP.Contrast, 'all')); % show progress
fprintf(fileId, '\n');
end
% Save LSP Correlation Time
if ~isempty(DataLSP.CorrelationTime)
fprintf(fileId, 'Statistics --> Tcmax = %.3g [s], Tcmin = %.3g [s], Tcmean = %.3g [s]\n', max(DataLSP.CorrelationTime, [], 'all'), min(DataLSP.CorrelationTime, [], 'all'), mean(DataLSP.CorrelationTime, 'all')); % show progress
fprintf(fileId, '\n');
end
% Save LSP Velocity
if ~isempty(DataLSP.Velocity)
fprintf(fileId, 'Statistics --> Vmax = %.3f [mm/s], Vmin = %.3f [mm/s], Vmean = %.3f [mm/s]\n', max(DataLSP.Velocity, [], 'all')/1000, min(DataLSP.Velocity, [], 'all')/1000, mean(DataLSP.Velocity, 'all')/1000); % show progress
fprintf(fileId, '\n');
end
% Statistics in a given pixel
fprintf(fileId, 'Statistics Pixel[%d, %d, %d] --> K = %f, Tc = %g [s], V = %.3f [mm/s]\n', pixY, pixX, pixZ, DataLSP.Contrast(pixX, pixY, pixZ), DataLSP.CorrelationTime(pixX, pixY, pixZ), DataLSP.Velocity(pixX, pixY, pixZ)/1000); % show progress
fprintf(fileId, '\n');
fclose(fileId);
fprintf('End saving LSP Data parameters!\n'); % show progress
end