generated from yakhyo/project-template
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference.py
106 lines (82 loc) · 3.27 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import argparse
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
from crackseg.models import UNet
def preprocess(image, is_mask):
"""Preprocess image and mask"""
img_ndarray = np.asarray(image)
if not is_mask:
if img_ndarray.ndim == 2:
img_ndarray = img_ndarray[np.newaxis, ...]
else:
img_ndarray = img_ndarray.transpose((2, 0, 1))
img_ndarray = img_ndarray / 255
return img_ndarray
def plot_img_and_mask(img, mask):
"""Display image and mask"""
classes = mask.shape[0] if len(mask.shape) > 2 else 1
fig, ax = plt.subplots(1, classes + 1)
ax[0].set_title("Input image")
ax[0].imshow(img)
if classes > 1:
for i in range(classes):
ax[i + 1].set_title(f"Output mask (class {i + 1})")
ax[i + 1].imshow(mask[1, :, :])
else:
ax[1].set_title("Output mask")
ax[1].imshow(mask)
plt.xticks([]), plt.yticks([])
plt.show()
def predict(model, image, device, conf_thresh=0.5):
model.eval()
model.to(device)
# Preprocess
image = torch.from_numpy(preprocess(image, is_mask=False))
image = image.unsqueeze(0)
image = image.to(device, dtype=torch.float32)
with torch.no_grad():
output = model(image).cpu()
if model.out_channels > 1:
mask = output.argmax(dim=1)
else:
mask = torch.sigmoid(output) > conf_thresh
return mask[0].long().squeeze().numpy()
def mask_to_image(mask: np.ndarray):
"""Convert mask to image"""
if mask.ndim == 2:
return Image.fromarray((mask * 255).astype(np.uint8))
elif mask.ndim == 3:
return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8))
def parse_opt():
parser = argparse.ArgumentParser(description="Crack Segmentation inference arguments")
parser.add_argument("--weights", default="./weights/last.pt", help="Path to weight file (default: last.pt)")
parser.add_argument("--input", type=str, default="./assets/image.jpg", help="Path to input image")
parser.add_argument("--output", default="output.jpg", help="Path to save mask image")
parser.add_argument("--view", action="store_true", help="Visualize image and mask")
parser.add_argument("--no-save", action="store_true", help="Do not save the output masks")
parser.add_argument("--conf-thresh", type=float, default=0.5, help="Confidence threshold for mask")
return parser.parse_args()
def main(opt):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if os.path.exists(opt.weights):
ckpt = torch.load(opt.weights, map_location=device)
else:
raise AssertionError(f"Trained weights not found in {opt.weights}")
# Initialize model and load checkpoint
model = UNet(in_channels=3, out_channels=2)
model.load_state_dict(ckpt["model"].float().state_dict())
# Load & Inference
image = Image.open(opt.input)
output = predict(model=model, image=image, device=device, conf_thresh=opt.conf_thresh)
# Convert mask to image
result = mask_to_image(output)
result.save(opt.output)
# Visualize
if opt.view:
plot_img_and_mask(image, output)
if __name__ == "__main__":
params = parse_opt()
main(params)