-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
148 lines (124 loc) · 4.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# ================================================================ #
# Get Device for Training #
# ================================================================ #
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f'Using {device} device')
# ================================================================ #
# Define the Class #
# ================================================================ #
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
'''Result:
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
(5): ReLU()
)
)
'''
X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probability = nn.Softmax(dim=1)(logits)
y_pred = pred_probability.argmax(1)
print(f"Predicted class: {y_pred}")
''' Predicted class: tensor([9], device='cuda:0') '''
# ================================================================ #
# Model Layers #
# ================================================================ #
input_image = torch.rand(3, 28, 28)
print(input_image.size())
'''Result:
torch.Size([3, 28, 28])
'''
# nn.Flatten
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.size())
'''Result:
torch.Size([3, 784])
'''
# nn.Linear
layer1 = nn.Linear(in_features=28 * 28, out_features=20)
hidden1 = layer1(flat_image)
print(hidden1.size())
'''Result:
torch.Size([3, 20])
'''
# nn.ReLU
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
"""
Before ReLU: tensor([[-0.1126, -0.3230, 0.5091, 0.3814, -0.1690, 0.1766, 0.0877, 0.0550,
-0.1617, -0.2699, 0.1601, -0.5527, -1.1046, -0.0263, -0.1490, -0.2710,
0.2683, -0.0678, 0.0049, -0.0662],
[-0.2466, 0.1945, 0.3531, 0.1308, 0.0011, -0.0651, 0.3204, -0.2037,
-0.3126, -0.0906, 0.0174, -0.5440, -1.0114, 0.3616, -0.2000, -0.0712,
0.2265, -0.3949, -0.0954, -0.0048],
[-0.1062, 0.0397, 0.1318, 0.2476, -0.1244, -0.2751, 0.0455, -0.2235,
-0.4011, 0.0195, 0.1683, -0.9019, -0.7498, 0.5108, -0.3084, -0.1637,
0.1855, -0.5018, 0.0173, -0.3605]], grad_fn=<AddmmBackward>)
After ReLU: tensor([[0.0000, 0.0000, 0.5091, 0.3814, 0.0000, 0.1766, 0.0877, 0.0550, 0.0000,
0.0000, 0.1601, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2683, 0.0000,
0.0049, 0.0000],
[0.0000, 0.1945, 0.3531, 0.1308, 0.0011, 0.0000, 0.3204, 0.0000, 0.0000,
0.0000, 0.0174, 0.0000, 0.0000, 0.3616, 0.0000, 0.0000, 0.2265, 0.0000,
0.0000, 0.0000],
[0.0000, 0.0397, 0.1318, 0.2476, 0.0000, 0.0000, 0.0455, 0.0000, 0.0000,
0.0195, 0.1683, 0.0000, 0.0000, 0.5108, 0.0000, 0.0000, 0.1855, 0.0000,
0.0173, 0.0000]], grad_fn=<ReluBackward0>)
"""
# nn.Sequential
""" nn.Sequential is an ordered container of modules. The data is passed through
all the modules in the same order as defined. You can use sequential containers
to put together a quick network like seq_modules """
seq_modules = nn.Sequential(
flatten,
layer1,
nn.ReLU(),
nn.Linear(20, 10)
)
input_image = torch.rand(3, 28, 28)
logits = seq_modules(input_image)
# nn.Softmax
softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)
# ================================================================ #
# Model Parameters #
# ================================================================ #
''' Iterating over each parameter, and print its size and a preview of its values '''
print("Model structure: ", model, "\n\n")
for name, param in model.named_parameters():
print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")