-
Notifications
You must be signed in to change notification settings - Fork 62
/
train_eval.py
664 lines (526 loc) · 26.9 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
import os, csv, random, collections, pickle
import modeling, optimization, tokenization
from arguments import *
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids, input_mask, segment_ids, label_id, is_real_example=True):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class SelfProcessor(DataProcessor):
"""Processor for the FenLei data set (GLUE version)."""
def get_train_examples(self, data_dir):
file_path = os.path.join(data_dir, 'train.txt') # cnews.train.txt
with open(file_path, 'r', encoding="utf-8") as f:
reader = f.readlines()
random.seed(0)
random.shuffle(reader) # 注意要shuffle
examples, self.labels = [], []
for index, line in enumerate(reader):
guid = 'train-%d' % index
split_line = line.strip().split("\t")
text_a = tokenization.convert_to_unicode(split_line[1])
text_b = None
label = split_line[0]
examples.append(InputExample(guid=guid, text_a=text_a,
text_b=text_b, label=label))
self.labels.append(label)
return examples
def get_dev_examples(self, data_dir):
file_path = os.path.join(data_dir, 'val.txt')
with open(file_path, 'r', encoding="utf-8") as f:
reader = f.readlines()
random.shuffle(reader)
examples = []
for index, line in enumerate(reader):
guid = 'dev-%d' % index
split_line = line.strip().split("\t")
text_a = tokenization.convert_to_unicode(split_line[1])
text_b = None
label = split_line[0]
examples.append(InputExample(guid=guid, text_a=text_a,
text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
file_path = os.path.join(data_dir, 'test.txt')
with open(file_path, 'r', encoding="utf-8") as f:
reader = f.readlines()
# random.shuffle(reader) # 测试集不打乱数据,便于比较
examples = []
for index, line in enumerate(reader):
guid = 'test-%d' % index
split_line = line.strip().split("\t")
text_a = tokenization.convert_to_unicode(split_line[1])
text_b = None
label = split_line[0]
examples.append(InputExample(guid=guid, text_a=text_a,
text_b=text_b, label=label))
return examples
def one_example(self, sentence):
guid, label = 'pred-0', self.labels[0]
text_a, text_b = sentence, None
return InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)
def get_labels(self):
return sorted(set(self.labels), key=self.labels.index) # 使用有序列表而不是集合。保证了标签正确
def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids, input_mask=input_mask,
segment_ids=segment_ids, label_id=label_id,
is_real_example=True)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = arg_dic['train_batch_size'] # params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config, is_training=is_training,
input_ids=input_ids, input_mask=input_mask,
token_type_ids=segment_ids, use_one_hot_embeddings=False)
# In the demo, we are doing a simple classification task on the entire segment.
#
# If you want to use the token-level output, use model.get_sequence_output() instead.
embedding_layer = model.get_sequence_output()
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train, num_warmup, ):
"""Returns `model_fn` closure for GPU Estimator."""
def model_gpu(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for GPU 版本的 Estimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels)
tvars = tf.trainable_variables()
initialized_variable_names = {}
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(total_loss, learning_rate, num_train, num_warmup, False)
output_spec = tf.estimator.EstimatorSpec(mode=mode, loss=total_loss, train_op=train_op, )
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {"eval_accuracy": accuracy, "eval_loss": loss, }
metrics = metric_fn(per_example_loss, label_ids, logits, True)
output_spec = tf.estimator.EstimatorSpec(mode=mode, loss=total_loss, eval_metric_ops=metrics)
else:
output_spec = tf.estimator.EstimatorSpec(mode=mode, predictions={"probabilities": probabilities}, )
return output_spec
return model_gpu
# This function is not used by this file but is still used by the Colab and people who depend on it.
def input_fn_builder(features, seq_length, is_training, drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
def input_fn(params):
"""The actual input function."""
batch_size = 200 # params["batch_size"]
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(all_input_mask, shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(all_segment_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn
def create_classification_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels):
# 通过传入的训练数据,进行representation
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
)
embedding_layer = model.get_sequence_output()
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
if labels is not None:
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
else:
loss, per_example_loss = None, None
return (loss, per_example_loss, logits, probabilities)
def save_PBmodel( num_labels):
""" 保存PB格式中文分类模型 """
try:
# 如果PB文件已经存在,则返回PB文件的路径,否则将模型转化为PB文件,并且返回存储PB文件的路径
pb_file = os.path.join(arg_dic['pb_model_dir'], 'classification_model.pb')
graph = tf.Graph()
with graph.as_default():
input_ids = tf.placeholder(tf.int32, (None, arg_dic['max_seq_length']), 'input_ids')
input_mask = tf.placeholder(tf.int32, (None, arg_dic['max_seq_length']), 'input_mask')
bert_config = modeling.BertConfig.from_json_file(arg_dic['bert_config_file'])
loss, per_example_loss, logits, probabilities = create_classification_model(
bert_config=bert_config, is_training=False,
input_ids=input_ids, input_mask=input_mask, segment_ids=None, labels=None, num_labels=num_labels)
probabilities = tf.identity(probabilities, 'pred_prob')
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
latest_checkpoint = tf.train.latest_checkpoint(arg_dic['output_dir'])
saver.restore(sess, latest_checkpoint)
from tensorflow.python.framework import graph_util
tmp_g = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), ['pred_prob'])
# 存储二进制模型到文件中
with tf.gfile.GFile(pb_file, 'wb') as f:
f.write(tmp_g.SerializeToString())
return pb_file
except Exception as e:
print('fail to optimize the graph! %s', e)
def main():
tf.logging.set_verbosity(tf.logging.INFO)
processors = {"cnews": SelfProcessor}
tokenization.validate_case_matches_checkpoint(arg_dic['do_lower_case'], arg_dic['init_checkpoint'])
if not arg_dic['do_train'] and not arg_dic['do_eval'] and not arg_dic['do_predict']:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
bert_config = modeling.BertConfig.from_json_file(arg_dic['bert_config_file'])
if arg_dic['max_seq_length'] > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(arg_dic['max_seq_length'], bert_config.max_position_embeddings))
tf.gfile.MakeDirs(arg_dic['output_dir'])
tf.gfile.MakeDirs(arg_dic['pb_model_dir'])
task_name = arg_dic['task_name'].lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
tokenizer = tokenization.FullTokenizer(vocab_file=arg_dic['vocab_file'], do_lower_case=arg_dic['do_lower_case'])
tpu_cluster_resolver = None
run_config = tf.estimator.RunConfig(model_dir=arg_dic['output_dir'],
save_checkpoints_steps=arg_dic['save_checkpoints_steps'], )
processor = processors[task_name]()
train_examples = processor.get_train_examples(arg_dic['data_dir'])
global label_list
label_list = processor.get_labels()
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
with open(arg_dic['pb_model_dir'] + 'label_list.pkl', 'wb') as f:
pickle.dump(label_list, f)
with open(arg_dic['pb_model_dir'] + 'label2id.pkl', 'wb') as f:
pickle.dump(label_map, f)
num_train_steps = int(
len(train_examples) / arg_dic['train_batch_size'] * arg_dic['num_train_epochs']) if arg_dic[
'do_train'] else None
num_warmup_steps = int(num_train_steps * arg_dic['warmup_proportion']) if arg_dic['do_train'] else None
model_fn = model_fn_builder(bert_config=bert_config, num_labels=len(label_list),
init_checkpoint=arg_dic['init_checkpoint'], learning_rate=arg_dic['learning_rate'],
num_train=num_train_steps, num_warmup=num_warmup_steps)
estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config, )
if arg_dic['do_train']:
train_file = os.path.join(arg_dic['output_dir'], "train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_list, arg_dic['max_seq_length'], tokenizer, train_file)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", arg_dic['train_batch_size'])
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file, seq_length=arg_dic['max_seq_length'],
is_training=True, drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
if arg_dic['do_eval']:
eval_examples = processor.get_dev_examples(arg_dic['data_dir'])
num_actual_eval_examples = len(eval_examples)
eval_file = os.path.join(arg_dic['output_dir'], "eval.tf_record")
file_based_convert_examples_to_features(
eval_examples, label_list, arg_dic['max_seq_length'], tokenizer, eval_file)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", arg_dic['eval_batch_size'])
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file, seq_length=arg_dic['max_seq_length'],
is_training=False, drop_remainder=False)
result = estimator.evaluate(input_fn=eval_input_fn, )
output_eval_file = os.path.join(arg_dic['output_dir'], "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if arg_dic['do_predict']:
predict_examples = processor.get_test_examples(arg_dic['data_dir']) # 待预测的样本们
num_actual_predict_examples = len(predict_examples)
predict_file = os.path.join(arg_dic['output_dir'], "predict.tf_record")
file_based_convert_examples_to_features(predict_examples, label_list,
arg_dic['max_seq_length'], tokenizer, predict_file)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", arg_dic['predict_batch_size'])
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file, seq_length=arg_dic['max_seq_length'],
is_training=False, drop_remainder=False)
result = estimator.predict(input_fn=predict_input_fn) # 执行预测操作,得到结果
output_predict_file = os.path.join(arg_dic['output_dir'], "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:
tf.logging.info("***** Predict results *****")
for sam, prediction in zip(predict_examples, result):
probabilities = prediction["probabilities"]
gailv = probabilities.tolist() # 先转换成Python列表
pos = gailv.index(max(gailv)) # 定位到最大概率值索引,
# 找到预测出的类别名,写入到输出文件
writer.write('{}\t{}\t{}\n'.format(sam.label, sam.text_a, label_list[pos]))
save_PBmodel(len(label_list)) # 生成单个pb模型。
if __name__ == "__main__":
main()